

ADVANCED GCE CHEMISTRY

Trends and Patterns

THURSDAY 25 JANUARY 2007

Additional materials: Scientific calculator

Data Sheet for Chemistry (Inserted)

2815/01

Afternoon

Time: 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this
 is indicated in the question.
- You may use a scientific calculator.
- A copy of the Data Sheet for Chemistry is provided as an insert with this question paper.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE					
Qu.	Max.	Mark			
1	7				
2	6				
3	20				
4	12				
TOTAL	45				

This document consists of **12** printed pages and a *Data Sheet for Chemistry*.

SP (MML 12898 3/06) T23152/2

© OCR 2007 [J/100/3427]

OCR is an exempt Charity

OCR OCR OCR OCR OCR

Answer all the questions.

1 This question is about oxides of elements in Period 3.

chemical formula	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀	SO ₃
structure	giant	giant	giant	giant	simple	simple
bonding	ionic	ionic	intermediate	covalent	covalent	covalent

(a)	Ехр	lain the trend	in chem	ical form	ula sho	wn in the ta	ble.			
										[1]
(b)		d magnesium bonding.	n oxide i	s an elec	trical in	nsulator. Ex	plain thi	s property in ter	ms of stru	cture
										[1]
(c)	Soli	d aluminium d	oxide is a	amphoter	ic. This	means it re	acts wit	h acids and base	es.	
	(i)	Write an ed		to show	the re	eaction betw	veen a	luminium oxide	and hot o	dilute
										. [1]
	(ii)	Aluminium of the reaction			hot aqı	ueous sodiu	m hydro	oxide. Balance th	nis equatio	n for
		Al_2O_3	+	H ₂ O	+	NaOH	\rightarrow	Na ₃ A <i>l</i> (OH) ₆		[1]

(d)	${\rm Silicon(IV)}$ oxide, ${\rm SiO_2}$, has a high melting point. Explain this property in terms of structure and bonding.
(a)	Lies the information in the table to help you medict the action of water as B.C.
(e)	Use the information in the table to help you predict the action of water on P_4O_{10} .
	[1]
	[1]

[Turn over

[Total: 7]

OCR OCR

2 Mercury thermometers are not used in some laboratories because of the danger of mercury vapour. This vapour is very easily absorbed through the lungs into the blood.

In the blood, mercury reacts with hydrogen peroxide to form mercury(II) oxide.

$$\mathrm{Hg} + \mathrm{H_2O_2} \rightarrow \mathrm{HgO} + \mathrm{H_2O}$$

The mercury(II) oxide formed accumulates within organs in the body.

\ /	Use oxidation numbers to show that the reaction between mercury and hydrogen peroxide is an example of both oxidation and reduction.

______[2]

(b) Mercury forms two ions, ${\rm Hg_2}^{2+}$ and ${\rm Hg}^{2+}$. The table shows the electronic configuration of mercury in these ions.

ion	electronic configuration	
Hg ₂ ²⁺	[Xe]4f ¹⁴ 5d ¹⁰ 6s ¹	
Hg ²⁺	[Xe]4f ¹⁴ 5d ¹⁰	

Use the electronic configurations to explain why mercury is not a transition element.	
[1]

(C)) Hydrogen	peroxide	has th	e following	displayed	formula
(.	, ilyalogon	POTONIGO	nao in	CIONOWING	displayed	lorrinala.

H-O-O-H

(i) Draw a 'dot-and-cross' diagram for a molecule of H₂O₂ showing only the outer shell electrons.

[1]

(ii) Use the 'dot-and-cross' diagram to predict the H—O—O bond angle in hydrogen peroxide. Explain your answer.

[Total: 6]

3

A 1 mas	$67\mathrm{mg}$ sample of iron reacts with a stream of dry chlorine to form $487\mathrm{mg}$ of solid X . The molar ss of solid X was determined to be $324.6\mathrm{gmol}^{-1}$.
(a)	Calculate the molecular formula of X .
	molecular formula of X is[3]
(b)	Two properties of solid X are shown below.
(5)	It melts when heated gently.
	It reacts with water to form a solution that is highly acidic. What do these preparties suggests be at the attractive and the discussion of the second
	What do these properties suggest about the structure and bonding in solid X?
	Explain your answer.
	[2]
OCR 200	7

948302206

OCCUPANT OCC

		7
(c)	is fo	ample of iron is heated with a stream of dry hydrogen chloride. A different chloride of iron ormed that contains the Fe ²⁺ ion. This chloride dissolves in water to form a pale green ation that contains the hexaaquairon(II) complex ion.
	(i)	Complete the electronic configuration of Fe ²⁺ .
		1s ² 2s ² 2p ⁶ [1]
	(ii)	Draw the shape of the hexaaquairon(II) complex ion. Include the bond angles on your diagram.
	/!!!\	
	(iii)	Aqueous sodium hydroxide is added to a solution containing Fe ²⁺ (aq).
		State what you would observe.
		Write an ionic equation, with state symbols, for the reaction.
		[2]

(d) Aqueous hexaaquairon(III) ions react with aqueous thiocyanate ions in a ligand su reaction to give a complex ion with the formula [Fe(H ₂ O) ₅ (SCN)] ²⁺ .							
	(i)	Write an equation for this ligand substitution reaction.					
		[1]				
	(ii)	You are provided with					
		• 0.100 mol dm ⁻³ aqueous iron(III) chloride,					
		• 0.0500 mol dm ⁻³ aqueous potassium thiocyanate.					
	Des [Fe	scribe how you would use colorimetry to confirm the formula of the complex ior $(H_2O)_5(SCN)]^{2+}$.	1				
			•				
			٠				
		[5]]				

© OCR 2007

- (e) The percentage purity of a sample of manganese(IV) oxide, MnO2, can be determined by its reaction with acidified iron(II) ions.
 - Stage 1 A sample of known mass of the impure MnO₂ is added to a conical flask.
 - Stage 2 -The sample is reacted with a known excess amount of Fe²⁺ acidified with dilute sulphuric acid.
 - Stage 3 -The contents of the flask are heated gently.
 - The cooled contents of the flask are titrated with aqueous potassium Stage 4 – manganate(VII) in acidic conditions to find the amount of unreacted Fe²⁺.
 - The reduction half-equation for manganese(IV) oxide in the presence of dilute acid is shown below.

$$MnO_2(s) + 4H^+(aq) + 2e^- \rightarrow Mn^{2+}(aq) + 2H_2O(l)$$

Construct the balanced equation for the redox reaction between $Fe^{2+}(aq)$, $MnO_2(s)$ and $H^+(aq)$.	k
[1	1

In Stage 1 and Stage 2 a student uses a $0.504\,\mathrm{g}$ sample of impure $\mathrm{MnO_2}$ and $100\,\mathrm{cm^3}$ of 0.200 moldm⁻³ Fe²⁺.

In Stage 4 the student determines that the amount of unreacted Fe²⁺ is 0.0123 mol.

1 mol of MnO₂ reacts with 2 mol of Fe²⁺.

Calculate the percentage purity of the impure sample of MnO2.

percentage purity = % [3]

[Total: 20]

4 In this question, one mark is available for the quality of spelling, punctuation and grammar.

The lattice enthalpy of magnesium chloride, $MgCl_2$, can be determined using a Born-Haber cycle and the following enthalpy changes.

name of process	enthalpy change/kJ mol-1		
enthalpy change of formation of $MgCl_2(s)$	-641		
enthalpy change of atomisation of magnesium	+148		
first ionisation energy of magnesium	+738		
second ionisation energy of magnesium	+1451		
enthalpy change of atomisation of chlorine	+123		
electron affinity of chlorine	-349		

 Define, using an equation with MgCl₂ as an example, what is meant by the term lattice enthalpy. • Construct a Born-Haber cycle for ${\rm MgC}\,l_2$, including state symbols, and calculate the lattice enthalpy of ${\rm MgC}\,l_2$.

		the lattice enthalpy			-
		120220			
••••	•••••••			quincial bases	
••••			 	•••••	

© OCR 200