

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE

CHEMISTRY

2815/06

Transition Elements

Wednesday

25 JANUARY 2006

Afternoon

50 minutes

Candidates answer on the question paper.
Additional materials:
Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 50 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre Number and Candidate number in the boxes above.
- · Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in calculations.

FOR EXAMINER'S USE					
Qu.	Max.	Mark			
1	11				
2	9				
3	9				
4	8				
5	8				
TOTAL	45				

Answer all the questions.

1	Cob	alt re	eadily forms complex	ions in which the cobalt has an oxidation state of +2.	
	(a)			alt is the hexaaquocobalt(II) ion [Co(H ₂ O) ₆] ²⁺ .	
		(i)		nation number of Co ²⁺ in this complex ion?	[1]
		(ii)	Water is acting as a	ligand. Explain the meaning of the term ligand.	נין
				Angress to the second to the	
					[2]
	(b)	[Co	(H ₂ O) ₆] ²⁺ readily un	dergoes the following reaction.	
			[Co(H ₂ O) ₆]	$^{2+}(aq) + 4Cl^{-}(aq) \rightleftharpoons [CoCl_4]^{2-}(aq) + 6H_2O(l)$	
		(i)	What is the shape of	of each complex in this reaction?	
			$[Co(H_2O)_6]^{2+}$	shape	
			$[CoCl_4]^{2-}$	shape	[1]
		(ii)	What colour change	e would occur on going from left to right in this reaction?	
			from	to	[1]
		(iii)	What type of reaction	on is taking place when $[Co(H_2O)_6]^{2+}$ reacts with Cl^- ?	
					[1]

		the forms the complex [Co(NH Draw diagrams to show the	two isomeric forms of this com	nplex.
				[2
	(ii)	What type of stereoisomeris	sm is shown by this complex?	
				[1
)	show	alt also forms a complex with ws the same kind of isomeritereoisomerism.	h the formula $[Co(H_2NCH_2CH_2]$ ism as $[Co(NH_3)_4Cl_2]$ but it als	NH ₂) ₂ Cl ₂]. This comple o shows a different typ
)	show of st	ws the same kind of isomeri rereoisomerism.	h the formula $[Co(H_2NCH_2CH_2]$ ism as $[Co(NH_3)_4Cl_2]$ but it also isomers of this different type of	o shows a different typ
)	show of st	ws the same kind of isomeri rereoisomerism.	ism as [Co(NH ₃) ₄ Cl ₂] but it als	o shows a different typ
)	show of st	ws the same kind of isomeri rereoisomerism.	ism as [Co(NH ₃) ₄ Cl ₂] but it als	o shows a different typ
)	show of st	ws the same kind of isomeri rereoisomerism.	ism as [Co(NH ₃) ₄ Cl ₂] but it als	o shows a different typ
)	show of st	ws the same kind of isomeri rereoisomerism.	ism as [Co(NH ₃) ₄ Cl ₂] but it als	o shows a different typ
)	show of st	ws the same kind of isomeri rereoisomerism.	ism as [Co(NH ₃) ₄ Cl ₂] but it als	o shows a different typ
i)	show of st	ws the same kind of isomeri rereoisomerism.	ism as [Co(NH ₃) ₄ Cl ₂] but it als	o shows a different type

[2]

2 One important property of transition elements is their ability to form coloured compounds.

The splitting of d-orbital energy levels is instrumental in causing colour.

(a) In the boxes below, draw one lower energy d-orbital and one higher energy d-orbital in an octahedral complex.

lower energy d-orbital

higher energy d-orbital

(b) Explain how the splitting of d-orbital energy levels leads to colour in transition metal compounds.

......[4]

(c) The compound ${\rm CrC}l_3.6{\rm H}_2{\rm O}$ can exist in three isomeric forms, which have different colours.

 $[Cr(H_2O)_6]Cl_3$

purple

 $[\mathrm{Cr}(\mathrm{H_2O})_5\mathrm{C}l\,]\mathrm{C}l_2.\mathrm{H_2O}$

grey-green

 $[Cr(H_2O)_4Cl_2]Cl.2H_2O$

green

The following visible spectrum was obtained from a solution of one of the isomers.

Identify the isomer and explain your answer.	
Character and an action of the control of the contr	
	[3]
	[Total: 9]

3

Chr	omium metal and its compounds have a number of important uses.
(a)	State one use of chromium and explain why chromium is suitable for this purpose.
	[1]
(b)	${\rm CrO_4^{\ 2^-}}$ ions and ${\rm Cr_2O_7^{\ 2^-}}$ ions are both oxidising agents. They exist in the following equilibrium.
	$2CrO_4^{2-}(aq) + 2H^+(aq) \rightleftharpoons Cr_2O_7^{2-}(aq) + H_2O(I)$
	(i) Show that this equilibrium does not represent a redox reaction.
	[1]
	(ii) What colour change occurs in the forward reaction?
	from to
	(iii) What reagent would you add to reverse this colour change?
	[1]
(c)	$\rm Cr_2O_7^{2-}$ ions oxidise $\rm I^-$ ions to $\rm I_2$ under acid conditions according to the following equation.
	$Cr_2O_7^{2-}(aq) + 6I^-(aq) + 14H^+(aq) \implies 2Cr^{3+}(aq) + 3I_2(aq) + 7H_2O(l)$
	(i) If you carried out this reaction, how could you see that iodine is formed?

(ii)	Hov	v could centrati	d you on of a	use the fo solution of	ormation f Cr ₂ O ₇ 2	on of I_2 ions?	in this re	eaction	to deter	mine the
	In y	our ans	wer							
	•	state t	he metl	hod you wo	ould use	9				
	•	state t	he reag	gents used						
	•	show I	now you	u would us	e your r	esults.				
	••••	•••••								
	, de							7		8
				-						[4]
										[Total: 9]

The standard electrode potential of the $\frac{1}{2}Cl_2/Cl^-$ half-cell may be measured using the following apparatus.

(a) Suggest suitable labels for A, B, C and D.

A

В

C

D[2]

(b) The half cell reactions involved are shown below.

 $\frac{1}{2}Cl_2 + e^- \rightleftharpoons Cl^-$

$$E^{\oplus} = +1.36 \,\text{V}$$

$$H^+ + e^- \rightleftharpoons \frac{1}{2}H_2$$

$$E^{\oplus} = 0.00 \text{ V}$$

(i) Use an arrow to show the direction of flow of electrons in the diagram of the apparatus. Explain your answer.

(ii) The values of E^{\oplus} are measured under standard conditions. What are the standard conditions?

(c) The half cell reaction for $ClO_3^{-}/\frac{1}{2}Cl_2$ is shown below.

$ClO_3^- + 6H^+ + 5e^-$	$\rightleftharpoons \frac{1}{2}Cl_2 + 3H_2O$	$E^{\oplus} = +1.47$
-------------------------	--	----------------------

What does this tell you about the oxidising ability of ClO₃⁻ compared with Cl₂?

Explain your answer.

[2]

[Total: 8]

5 In this question, one mark is available for the quality of spelling, punctuation and grammar.

Copper(I) oxide is a red/brown solid which is insoluble in water. It readily reacts with warm dilute sulphuric acid according to the following equation.

$$Cu_2O(s) + H_2SO_4(aq) \rightarrow CuSO_4(aq) + Cu(s) + H_2O(l)$$

For this reaction

- describe what you would see and discuss the redox process taking place
- compare the relative stability of copper in each of its oxidation states.

Quality of Written Communication [1]

[Total: 8]

END OF QUESTION PAPER