

ADVANCED GCE CHEMISTRY

Unifying Concepts

TUESDAY 23 JANUARY 2007

2816/01

Morning

Time: 1 hour 15 minutes

Number

Additional materials: Scientific calculator

Data Sheet for Chemistry (Inserted)

Candidate Name		
Centre	Candidate	

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and Candidate number in the boxes above.
- Answer all the questions.

Number

- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this
 is indicated in the question.
- You may use a scientific calculator.
- A copy of the Data Sheet for Chemistry is provided as an insert with this
 question paper.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE				
Qu.	Max.	Mark		
1	14			
2	14			
3	9			
4	7			
5	16			
TOTAL	60			

This document consists of **12** printed pages and a *Data Sheet for Chemistry*.

SP (MML 12898 3/06) T23542/3

© OCR 2007 [L/100/3428]

OCR is an exempt Charity

Answer all the questions.

1 Nitrogen monoxide reacts with hydrogen at 500 °C as in the equation below.

$$2\mathsf{NO}(\mathsf{g}) + 2\mathsf{H}_2(\mathsf{g}) \, \longrightarrow \, \mathsf{N}_2(\mathsf{g}) + 2\mathsf{H}_2\mathsf{O}(\mathsf{g})$$

A series of experiments was carried out to investigate the kinetics of this reaction. The results are shown in the table below.

experiment	[NO] /moldm ⁻³	[H ₂] /moldm ⁻³	initial rate /moldm ⁻³ s ⁻¹
1	0.10	0.20	2.6
2	0.10	0.50	6.5
3	0.30	0.50	58.5

(a) In this question, one mark is available for the quality of spelling, punctuation and grammar.

(i)	For each reactant, deduce the order of reaction. Show your reasoning.

Quality of Written Communication [1]

(ii) Deduce the rate equation for this reaction.

© OCR 200

950401002

(iii) Cal	culate the	rate constant,	k,	for this	reaction.	State	the	units	for	k.
-----------	------------	----------------	----	----------	-----------	-------	-----	-------	-----	----

		k = units			
(b)	Nitrogen monoxide, NO, is involved in formation of ozone at low levels and the breakdo ozone at high levels.				
	(i) In the lower atmosphere, NO is produced by combustion in car engines. Ozone formed following the series of reactions shown below.				
		$NO(g) + \frac{1}{2}O_2(g) \rightarrow NO_2(g)$			
		$NO_2(g) \rightarrow NO(g) + O(g)$			
		$O_2(g) + O(g) \rightarrow O_3(g)$			
		Write the overall equation for this reaction sequence.			
		Identify the catalyst and justify your answer.			
		[3]			
	(ii)	In the upper atmosphere, NO removes ${\rm O_3}$ by the following reaction mechanism.			
		$NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$ slow			
		$O(g) + NO_2(g) \rightarrow NO(g) + O_2(g)$ fast			
		Suggest the rate equation for this process. Explain your reasoning.			
		[2]			

[Total: 14]

2 When heated, phosphorus pentachloride, PCl₅, dissociates.

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

A chemist placed a mixture of the three gases into a container. The initial concentration of each gas was the same: 0.30 mol dm⁻³. The container was left until equilibrium had been reached.

Under these conditions, $K_c = 0.245 \,\mathrm{mol}\,\mathrm{dm}^{-3}$.

(a) Write an expression for $K_{\rm c}$ for this equilibrium.

[1]

- (b) Use the value of K_c for this equilibrium to deduce whether the concentration of each gas increases, decreases or stays the same as the mixture approaches equilibrium.
 - (i) Show your answer by placing a tick in the appropriate cells in the table below.

	initial concentration /moldm ⁻³	greater than 0.30 mol dm ⁻³	less than 0.30 mol dm ⁻³	equal to 0.30 mol dm ⁻³
PCl ₅	0.30			
PCl ₃	0.30			
Cl ₂	0.30			

[1]

(11)	Explain your deduction.

(c) The chemist compressed the equilibrium mixture at constant temperature and allowed it to reach equilibrium under these new conditions.

(i) Explain what happens to the value of K_c .

© OCR 2007

	(ii)	Explain what happened to the composition of the equilibrium mixture.
		[2]
(d)	The	chemist heated the equilibrium mixture and the equilibrium moved to the left.
	(i)	Explain what happens to the value of $K_{\rm c}$.
		[1]
	(ii)	Explain what additional information this observation reveals about the reaction.
		[2]
(e)		sphorus pentachloride reacts with magnesium oxide to form phosphorus(V) oxide, P_4O_{10} , magnesium chloride.
	(i)	Write a balanced equation for this reaction.
		[1]
	(ii)	Calculate the mass of PCl_5 needed to form 100 g of P_4O_{10} in this reaction.

mass =	 [4]
	r . 1

[Total: 14]

3 In sewage plants, biological activity can be reduced by increasing the pH of the water. This is achieved by adding small amounts of solid calcium hydroxide, Ca(OH)₂, to the sewage water.

In all parts of this question, assume that measurements have been made at 25 °C.

(a) The pH of aqueous solutions is determined by K_{w} .

 $K_{\rm w}$ has a value of 1.0 × 10⁻¹⁴ mol² dm⁻⁶ at 25 °C.

(i) What name is given to $K_{\rm w}$?

.....[1]

(ii) Write the expression for K_{w}

.. [1]

(b) A chemist checked the concentration of aqueous calcium hydroxide, $Ca(OH)_2$, in the sewage water by titration with $5.00 \times 10^{-3} \, \text{mol dm}^{-3}$ hydrochloric acid.

$${\rm Ca(OH)_2(aq)} + 2{\rm HC}\mathit{l}({\rm aq}) \, \longrightarrow \, {\rm CaC}\mathit{l}_2({\rm aq}) + 2{\rm H}_2{\rm O(I)}$$

The chemist titrated $25.0\,\mathrm{cm^3}$ of the sewage water with $21.35\,\mathrm{cm^3}$ of HCl to reach the endpoint of the titration.

Calculate the concentration, in mol dm⁻³, of the calcium hydroxide in the sewage water.

concentration = \dots mol dm⁻³ [3]

© OCR 2007

(c) The chemist analysed a sample of water from another part of the sewage works and he found that the calcium hydroxide concentration was $2.7 \times 10^{-3} \, \text{mol dm}^{-3}$.

Assume that when solid calcium hydroxide dissolves in water, its ions completely dissociate.

$$Ca(OH)_2(s) \rightarrow Ca^{2+}(aq) + 2OH^{-}(aq)$$

Calculate the pH of this sample.

[3]

(d) After further treatment, the water could be used for drinking. In the drinking water produced, the OH⁻ concentration was 100 times greater than the H⁺ concentration.

What was the pH of this drinking water?

[1]

[Total: 9]

© OCR 2007

OCR OCR OCR OCR OCR OCR OCR

OCF OCF

OCR OCR OCR OCR OCR OCR OCR

OCR OCR OCR

OCR OCR

'Superphosphate' fertilisers contain calcium dihydrogenphosphate, $Ca(H_2PO_4)_2$. This compound is one of the world's most important fertilisers. When dissolved in water, $Ca(H_2PO_4)_2$ dissociates forming $H_2PO_4^-$ ions which are easily taken up by plants.					
(a)		ium dihydrogenphosphate, $Ca(H_2PO_4)_2$, is produced by treating rock phosphate, aining $Ca_3(PO_4)_2$, with sulphuric acid, H_2SO_4 .			
	Writ	e a balanced equation for this reaction.			
		[1]			
(b)	Aqu	eous H ₂ PO ₄ ⁻ ions can act as a weak acid.			
	Writ	e an equation to represent the dissociation of the H ₂ PO ₄ ⁻ ion.			
		[1]			
(c)	The	H ₂ PO ₄ ⁻ ion can act as either an acid or a base.			
	(i)	State the formula of the conjugate base of H ₂ PO ₄ ⁻ .			
	(ii)	State the formula of the conjugate acid of H ₂ PO ₄ ⁻ .			
		[1]			
	(iii)	A solution of calcium dihydrogen phosphate, $\mathrm{Ca}(\mathrm{H_2PO_4})_2$, in water acts as a buffer solution.			
		Suggest, with the aid of equations, how this buffering action takes place.			
		[3]			
		[Total: 7]			

4

5 In order to obtain full marks in this question, you must show all your working clearly.

In its reactions, sulphuric acid, $\rm H_2SO_4$, can behave as an acid, an oxidising agent and as a dehydrating agent.

The displayed formula of pure sulphuric acid is shown below.

(a) The boiling point of pure sulphuric acid, at 270 °C, is higher than might be expected.

Suggest why the boiling point of sulphuric acid is higher than might be expected.

Explain your reasoning. Show a diagram in your answer.

 	 [3]

TURN OVER FOR PARTS (b), (c) AND (d)

(b)	Dilute sulphuric acid takes part in the typical acid reactions, reacting with metals, ca	arbonates
	and bases.	

Write balanced equations for the reaction of sulphuric acid with

a metal,

a carbonate,

(c) Concentrated sulphuric acid will readily oxidise halide ions to the halogen.

Equation 5.1 represents the unbalanced equation for the oxidation of iodide ions by sulphuric acid.

$$H^+ + SO_4^{2-} + I^- \rightarrow I_2 + H_2S + H_2O$$
 equation 5.1

- (i) Write the oxidation numbers of sulphur and iodine in the boxes above the equation. [2]
- (ii) Balance equation 5.1.

[1]

(d) Concentrated sulphuric acid reacts with many organic compounds, forming water as one of the products.

For example, sulphuric acid dehydrates ethanol by eliminating water to form ethene.

$$C_2H_5OH \rightarrow C_2H_4 + H_2O$$

Three other examples are shown below.

- Sulphuric acid dehydrates methanoic acid to form a gas, A, with the same molar mass as ethene.
- Sulphuric acid dehydrates sucrose, C₁₂H₂₂O₁₁, to form a black solid, B.
- Sulphuric acid dehydrates ethane-1,2-diol to form a compound C with a molar mass of 88 g mol⁻¹. In this reaction, 2 moles of ethane-1,2-diol produce 1 mole of C and 2 moles of H₂O.

formula of compound C . Write equations for each reaction and deduce the structural formula of compound C .

950401011

© OCR 2007