

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY

2816/01

Unifying Concepts

Thursday

23 JUNE 2005

Afternoon

1 hour 15 minutes

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

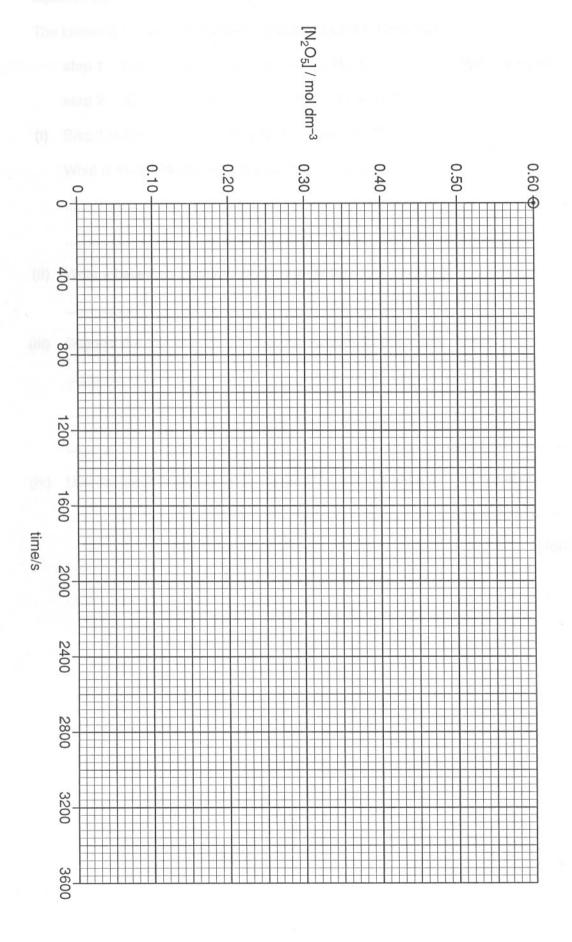
- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EX	AMINER	R'S USE
Qu	Max.	Mark
1	12	
2	18	
3	16	
4	14	
TOTAL	60	

Answer all the questions.

- 1 This question looks at two different experiments that investigate rates of reaction.
 - (a) The decomposition of dinitrogen pentoxide, N_2O_5 , at 45 °C was investigated. The reaction that takes place is shown below.

$$2N_2O_5 \rightarrow 4NO_2 + O_2$$


In an experiment, N_2O_5 with a concentration of 0.60 mol dm⁻³ was decomposed at 45 °C. At this temperature, the reaction has a constant half-life of 1200 s.

- (i) How can you tell that this reaction is first order with respect to N₂O₅?
- (ii) Write down an expression for the rate equation of this decomposition.
- (iii) Complete the graph opposite to show how the $[{\rm N_2O_5}]$ changes over the first 3600 s of the reaction.
- (iv) The rate of this reaction can be determined from this graph.

 Show on the graph how the rate can be measured after 1200 s.

 [1]
- (v) The rate can also be calculated from the rate equation. The rate constant for this reaction is $6.2 \times 10^{-4} \, \text{s}^{-1}$.

Calculate the initial rate of this reaction. State the units.

(b) A student investigated the hydration of 2-methylpropene, $(CH_3)_2C=CH_2$, with dilute aqueous acid to form 2-methylpropan-2-ol, $(CH_3)_3COH$.

The following mechanism has been proposed for this hydration.

$$\mathbf{step 1} \quad (\mathrm{CH_3})_2\mathrm{C=CH_2} \ + \ \mathrm{H^+(aq)} \ \longrightarrow \ (\mathrm{CH_3})_3\mathrm{C^+}$$

rate determining step

step 2
$$(CH_3)_3C^+ + H_2O \rightarrow (CH_3)_3COH + H^+(aq)$$

(i) Step 1 is the rate-determining step for this hydration.

What is meant by the term rate-determining step?

(ii) Write a balanced equation for the overall hydration reaction.

.....[1]

(iii) Suggest the role of H+(aq) in this mechanism. Explain your reason.

.....[2]

(iv) Use the mechanism above to suggest the rate equation for this hydration.

[Total: 12]

2 Methanol, CH₃OH(g), is manufactured from carbon monoxide and hydrogen in an equilibrium reaction.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H = -91 \text{ kJ mol}^{-1}$

(a) In this question, one mark is available for the quality of use and organisation of scientific terms.

Explain the advantages and disadvantages of running this reaction

· at a high pressure,

•	at a high temperature.
	iii vana a bala nced equation for the overall by tration reaction.
	(in) is appear the role of H*(aq) in this meanant on Explain your cases:

Quality of Written Communication [1]

- (b) This equilibrium reaction is normally carried out at 10 MPa pressure and 550 K, and starting with a 1:2 CO: H₂ mixture. At equilibrium, only 10% of the CO has reacted.
 - (i) Deduce the equilibrium amounts, mole fractions and partial pressures of CO, $\rm H_2$ and $\rm CH_3OH$ present at equilibrium. Write your answers in the table below.

Assume that you have started with a mixture of 1.0 mol CO and 2.0 mol H₂.

	CO	H ₂	CH ₃ OH
initial amount /mol	1.0	2.0	0.0
equilibrium amount /mol	0.9		
mole fraction at equilibrium			2.
partial pressure at equilibrium /MPa			

	(ii)	Write the expression for K_{ρ} for this equilibrium.
		[2]
	(iii)	The CO: $\rm H_2$ ratio in the starting mixture was changed from 1:2 to 1:3 and the mixture was allowed to reach equilibrium at the same temperature and pressure.
		Explain, in terms of K_p , the effect of this change on the equilibrium yield of $\mathrm{CH_3OH}$.
		ew to emulay to
		[3]
res	(iv)	In another experiment, the equilibrium partial pressures were:
		CO, 3.70 MPa; H ₂ , 5.10 MPa; CH ₃ OH, 0.261 MPa.
		Calculate the value of K_p for this equilibrium. Express your answer to an appropriate number of significant figures. State the units of K_p .
		$K_p =$
(c)	In the	he UK, the annual production of methanol is 500 000 tonnes. Methanol has many s in fuels as a reliable and low pollution form of energy.
	Sug	gest an equation for the combustion of methanol.
		[1]
		[Total: 18]

		nt carried out an investigation with aqueous solutions of nitric acid, sodit e, ethanoic acid and water.
(a)	Nitri	c acid, HNO ₃ , is a strong Brønsted-Lowry acid.
	(i)	Explain what is meant by a strong acid and a Brønsted-Lowry acid.
		and the second second second particles and a second
	(ii)	What is the conjugate base formed from HNO ₃ ?
	(,	That is the conjugate sace is med mem in early
(b)		student diluted $0.015\mathrm{moldm^{-3}}$ nitric acid with an equal volume of water assured the pH of the diluted acid at 25 °C.
	(i)	Calculate the pH of 0.015 mol dm ⁻³ nitric acid.
	(ii)	Calculate the pH of the diluted acid.
(c)	The	student measured the pH of a solution of sodium hydroxide as 13.54 at 25 °C.
		$K_{\rm w} = 1.0 \times 10^{-14} \; {\rm mol^2 dm^{-6}} \; {\rm at} \; 25 {\rm ^{\circ}C}.$
	(i)	Write down an expression for the ionic product, $K_{\rm w}$, for water.
	(ii)	Calculate the concentration, in mol dm ⁻³ , of this solution of sodium hydroxide.

- (d) The student prepared two solutions.
 - Solution A was made by mixing together 25 cm³ 0.010 mol dm⁻³ aqueous sodium hydroxide with 50 cm³ 0.010 mol dm⁻³ ethanoic acid, CH₃COOH. Solution A is a buffer solution.
 - Solution B was made by mixing together 25 cm³ 0.020 mol dm⁻³ aqueous sodium hydroxide with 50 cm³ 0.010 mol dm⁻³ ethanoic acid, CH₃COOH. Solution B is not a buffer solution.

	(i)	What is meant by a buffer solution?
		[1]
	(ii)	Explain why Solution A is a buffer solution whereas Solution B is not.
		O notulos ni e
		leisyto suid emes and a suid a suid emes and a service eme
		noiselletege to a contract the second of the
		And the state of t
		[4]
(e)		student measured the pH of water as 7.0 at 25 °C. The student then warmed the er to 40 °C and measured the pH as 6.7.
		at do these results tell you about the tendency of water to ionise as it gets warmer? lain your reasoning in terms of equilibrium.
	••••	[2]

[Total: 16]

4 In your answers to the questions that follow, show all of your working.

At room temperature and pressure, r.t.p., 1 mol of gas molecules has a volume of 24 dm³.

Whilst digging his garden, a chemistry student found what appeared to be a piece of bronze, possibly from the Bronze Age. The student knew that bronze was an alloy of copper with other metals including tin. He carried out three experiments on samples of the bronze.

(a) Experiment 1

He dissolved a small piece of the bronze, weighing 0.28 g, in concentrated (16 mol dm $^{-3}$) nitric acid, HNO $_3$. 5 cm 3 of a blue solution **C** containing Cu $^{2+}$ ions was formed together with a brown gas with the molecular formula NO $_2$.

Equation **4.1** represents the equation for the reaction between copper and concentrated nitric acid.

$$Cu + 4H^+ + 2NO_3^- \rightarrow Cu^{2+} + 2NO_2 + 2H_2O$$
 equation **4.1**

The student analysed the blue colour from the Cu^{2+} ions in solution ${\bf C}$ using a colorimeter. He found out that the concentration of Cu^{2+} ions in solution ${\bf C}$ was $0.68\,{\rm mol\,dm^{-3}}$.

The student concentrated the solution and obtained some blue crystals of a compound **A** with a percentage composition by mass of Cu, 26.29%; N, 11.60%; O, 59.63%; H, 2.48%. This composition included 3 waters of crystallisation.

- Calculate the percentage of copper in the bronze relic. [3]
- Calculate the empirical formula of A.
 [2]
- How would the formula of A normally be shown on a bottle of the chemical?

(b) Experiment 2

The student dissolved another small piece of the bronze relic in dilute $(8 \, \text{mol dm}^{-3})$ nitric acid. A blue solution containing Cu^{2+} ions was again formed but this time a colourless gas was produced with the molecular formula NO.

Equation 4.2 represents the unbalanced equation for this second reaction.

$$Cu + H^+ + NO_3^- \rightarrow Cu^{2+} + NO + H_2O$$

equation 4.2

• By considering oxidation numbers, balance equation 4.2.

[3]

(c) Experiment 3

The student heated a third small piece of the bronze relic with concentrated sulphuric acid. The copper in the bronze relic reacted to produce a blue solution and 90 cm³ of a gas **B**, measured at r.t.p.. The mass of the gas **B** collected was 0.24 g.

- Suggest a possible identity of gas B.
- Suggest a likely balanced equation for this reaction.

[4]