Abbreviations, annotations and conventions used in the mark scheme

Marking structures in organic chemistry
/ = alternative and acceptable answers for the same marking point ; = separates marking points
NOT $=$ answers not worthy of credit
() = words which are not essential to gain credit
(underlining) $=$ key words which must be used
$\overline{\text { ecf }}=$ allow error carried forward in consequential marking
AW = alternative wording
ora $=$ or reverse argument

When a structure is asked for, there must be sufficient detail using conventional carbon skeleton and functional group formulae (e.g. CH_{3}, $\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{OH}, \mathrm{COOH}, \mathrm{COOCH}_{3}$) to unambiguously define the arrangement of the atoms. (E.g. $\mathrm{C}_{3} \mathrm{H}_{7}$ would not be sufficient).

If not specified by the question, this may be given as either:

- a structural formula - e.g. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$,
- a skeletal formula - e.g.

- a displayed formula - e.g.

or as a hybrid of these - e.g.
The following errors should be penalised - although each one only loses a maximum of one mark on the paper:
- clearly connecting a functional group by the wrong atom
- showing only 'sticks' instead of hydrogen atoms -
e.g.

Benzene rings may be represented as
 as well as
 in any of the types of formula above.

Qu.
Expected answers:
1 (a) (i) alkene / C=C double bond (primary) alcohol / hydroxy(l)
(b) (i) molecules with the same structure / order of bonds ... but different arrangements in space / 3-D arrangment \checkmark
(ii) cis-trans / geometric \checkmark
(iii) the double bond does not rotate \checkmark
(iv) same groups at one end / need different groups at both ends of the $\mathrm{C}=\mathrm{C} \checkmark$ AW
(c) (i)
 a correct skeletal aldehyde is shown on $\mathrm{C}_{1} \checkmark$ rest of the skeletal structure $\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)$ correct
(ii) $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \longrightarrow \mathrm{C}_{9} \mathrm{H}_{15} \mathrm{CHO} \checkmark+\mathrm{H}_{2} \mathrm{O} \checkmark$

NOT COH, allow $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$
(d) (i) flavouring / fruity smell etc

NOT perfume or sweetener
(ii) conc $\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$ reflux/ distil
(iii) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{CH}_{2} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{C}_{9} \mathrm{H}_{15}+$ allow $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ and $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ $\mathrm{H}_{2} \mathrm{O}$ but NOT wrong structures allow ecf on the wrong acid
(e)

wavenumber range $\left(\mathrm{cm}^{-1}\right)$	$3230-3550$ (for OH)	$1680-1750$ (for $C=O$	$1000-1300$ (for $C-O$
geraniol	present \checkmark	(absent)	present \checkmark
aldehyde \mathbf{Y}	(absent)	present \checkmark	(absent)
ester Z	(absent)	present \checkmark	present \checkmark

Qu. Expected answers:

2 (a) any two of ...
fibres / dyes / explosives / pharmaceuticals etc $\checkmark \checkmark$
(b) temp $50-60^{\circ}$
concentrated (acids) \checkmark
(c) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$ reactants \checkmark products \checkmark
(d) (i) a pair of electrons .. \downarrow
... (electrons) move / transferred / a (covalent) bond breaks/forms
(ii) it accepts a pair of electrons (from the benzene)
(iii) H^{+}) (on the ring) is replaced by $\mathrm{NO}_{2}\left(^{+}\right) \downarrow$
(iv) it is not used up / reformed at the end AW \checkmark
(e) π-bonding electrons are delocalised \downarrow
six π-electrons in benzene \checkmark
four π-electrons in the intermediate \checkmark
π-electrons are not over one carbon atom /
over five carbon atoms / p-orbitals in the intermediate
π-electrons are over the complete ring / all around the ring all six carbon atoms/ p-orbitals overlapping \downarrow

Quality of written communication
for at least two sentences/statements with legible text and correct spelling, punctuation and grammar \checkmark
allow any specific examples as long as they do involve aromatic nitro or amine groups - eg NOT nylon, fertiliser etc
allow abbreviations for concentrated
allow a balanced equation for multiple nitration at any positions

NOT a 'lone' pair
allow 'substitutes' ignore ${ }^{+}$charges
this must be stated in words to compare benzene and the intermediate

3 (a) $1^{\text {st }}$ stage
aromatic amine / named aromatic amine / structure \checkmark
sodium nitrite / nitrous acid \checkmark $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{SO}_{4}$ (but not conc) $/ \mathrm{H}^{+} \downarrow$ at $<10^{\circ} \mathrm{C}$,
which forms a diazonium salt / ion \checkmark
$2^{\text {nd }}$ stage
the product from the first stage mixed with the phenol AW (in excess) hydroxide / alkali \checkmark
if more than four are given, mark any wrong reagents, conditions first
allow correct formulae for the reagents
allow any benzene rings as well as $\mathrm{N}=\mathrm{N}$ circled, as long as no other groups are
(c) $\mathrm{Na} / \mathrm{NaOH} / \mathrm{OH}^{-}$etc \checkmark
(d)

allow 1 mark if they are both correct, but in the wrong boxes
only penalise a slip with $\mathrm{SO}_{3}{ }^{-} \mathrm{Na}^{+}$ once
[Total: 13

4 (a) (i)

allow $\mathrm{R} \mathrm{CH} \mathrm{NH}_{2}$ and COOH in any order
(ii)

NOT just "they both have NH_{2} and $\mathrm{COOH}^{\prime \prime}$
R group is H in glycine and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ in glutamic acid
(b)

$-\mathrm{NH}_{3}{ }^{+} \checkmark$
$-\mathrm{COOH}$ and side chain unaffected

one - $\mathrm{COO}^{-} \checkmark$ both - COO^{-}-
$\mathrm{H}_{2} \mathrm{~N}$ - and rest of molecule \checkmark
(c) glutamic acid/molecule with optical isomers ...
\ldots is chiral ${ }^{\checkmark}$
... has four different / distinguishable groups attached to a carbon
... the mirror images/isomers cannot be superimposed AW

NOT just "different atoms"
one diagram showing two 3-D bonds not opposite each other, and not with angles looking like 90°

3-D diagram of the other isomer (allow ecf on one 3-D error)
all groups correctly connected for glutamic acid in both diagrams \checkmark
glycine
only has three different groups / two groups are
the same / 3-D diagram used to show symmetry \checkmark
7 marks
quality of written communication
for correct use and organisation of at least one technical term:
*(in the correct place), non-superimposable, enantiomer, stereoisomer(ism), tetrahedral, assymetric

5 (a) (i) addition (polymerisation) \checkmark
(ii)

\checkmark
(iii) π-bond breaks
many molecules join / a long chain forms /
equation to show this using ' n ' \checkmark
(b) alternating \checkmark

all four side groups placed above the chain with an alternating arrangement clearly shown by use of 3-D bonds $\checkmark \checkmark$
where 1 mark is for an incorrect diagram, but "(alternating) 3-D /spacial arrangement of side chains" stated in words
(c) atactic has side chains irregular / random(ly arranged in space/3-D) ora
atactic has weaker intermolecular / Van der Waals' forces
NOT just between the chains \checkmark ora
chemically sensible suggestion why irregular side chains could give weaker forces - eg because chains can't get as close / less surface contact \checkmark AW ora
[Total: 10]

Qu. Expected answers:

6 (a) (i) Find the m / e of $\ldots . \checkmark$
... the peak furthest to the right / with highest m / e or mass \checkmark
allow attempts to cater for the ${ }^{13} \mathrm{C}$ peak
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ /empirical formula has $\mathrm{M}_{r}=59 \checkmark$ so M_{r} of molecular formula is ${ }^{118} / 59=2$ /twice the empirical formula \checkmark
(b) (i) OH peak disappears (with $\mathrm{D}_{2} \mathrm{O}$ / on the second spectrum)
(ii)

peak at 3.3ppm identifed as due to the $\mathrm{CH} \checkmark$
peak at 1.2 ppm identified as due to the $\mathrm{CH}_{3} \checkmark$
protons (and not the carbon) on the groups are identified \checkmark
relative peak areas / numbers above the peaks show ... the number of (equivalent) protons in each group / three protons on one carbon and one on the other carbon \checkmark AW
quadruplet / 1:3:3:1 splitting (of the peak at 3.3ppm) shows... three protons on the neighbouring/adjacent carbon \checkmark
doublet / 1:1 splitting (of the peak at 1.2ppm) shows. one proton on the neighbouring /adjacent carbon \checkmark
assignment must be for this structure (not just R-CH ${ }_{3}$ etc)
can be by Ha, Hb etc

