Abbreviations, annotations and conventions used in the mark scheme = alternative and acceptable answers for the same marking point

; = separates marking points NOT = answers not worthy of credit

() = words which are not essential to gain credit (underlining) = key words which must be used

ecf = allow error carried forward in consequential marking

AW = alternative wording ora = or reverse argument

Marking structures in organic chemistry

When a structure is asked for, there must be sufficient detail using conventional carbon skeleton and functional group formulae (e.g. C_3H_5 , C_3H_5 , C_3H_5 , C_3H_7 would not be sufficient).

If not specified by the question, this may be given as either:

• a structural formula – e.g. CH₃CH(OH)C₂H₅,

a skeletal formula – e.g.

OH

• a displayed formula - e.g.

С-N-сн₃

or as a hybrid of these - e.g.

The following errors should be penalised – although each one only loses a maximum of one mark on the paper:

- clearly connecting a functional group by the wrong atom
- showing only 'sticks' instead of hydrogen atoms –

Benzene rings may be represented as of the types of formula above.

(Qu.	Expected answers	:				ı	Marks:
1	(a) (i)	alkene / C=C double bond (primary) alcohol / hydroxy(l) ✓						[1]
	(b) (i)	(i) molecules with the same structure / order of bonds but different arrangements in space / 3-D arrangment ✓						[1]
	(ii)	(ii) cis-trans / geometric ✓						[1]
	(iii)	(iii) the double bond does not rotate ✓(iv) same groups at one end / need different groups at both ends of the C=C ✓ AW						[1]
	(iv)							[1]
	(c) (i) a correct skeletal aldehyde is shown or rest of the skeletal structure (C ₂ -C ₁₀)co							[2]
	(ii)	C ₉ H ₁₅ CH ₂ OH + [O]	$\longrightarrow C_9H_{15}$	CHO ✓ + H ₂	20 ✓		NOT COH, allow C ₁₀ H ₁₆ C) [2]
	(d) (i)) flavouring / fruity smell etc					NOT perfume or sweetener	
	(ii)	conc H₂SO₄ ✓ reflux/ distil ✓						[2]
H ₂ O but NO					but NOT wro	0 ₂ and C ₁₂ H ₂₀ C ong structures the wrong aci	_	
	(e)	wavenumber	3230-3550	1680-1750	1000-1300			
		range (cm ⁻¹) geraniol	(for OH)	(for C=O)	(for C-O)	-		
		aldehyde Y	present ✓	(absent)	present ✓	-		
			(absent)	present ✓	(absent)	_		
		ester Z	(absent)	present ✓	present ✓			
								[5]

[Total: 20]

2814	Mark Scheme	January 2	2005
Qu.	Expected answers:	Ma	rks:
2 (a)	any two of fibres / dyes / explosives / pharmaceuticals etc ✓✓	allow any specific examples as long as they do involve aromatic nitro or amine groups – eg NOT nylon, fertiliser etc	[2]
(b)	temp 50-60° ✓ concentrated (acids) ✓	allow abbreviations for concentrated	[2]
(c)	$C_6H_6 + HNO_3 \longrightarrow C_6H_5NO_2 + H_2O$ reactants \checkmark products \checkmark	allow a balanced equation for multiple nitration at any positions	[2]
(d) (i	a pair of electrons ✓ (electrons) move / transferred / a (covalent) bond breaks/forms ✓		[2]
(ii)	it accepts a pair of electrons (from the benzene) ✓	NOT a 'lone' pair [1]
(iii)	H(⁺) (on the ring) is replaced by NO₂(⁺) ✓	allow 'substitutes' ignore ⁺ charges [[1]
(iv	it is not used up / reformed at the end AW ✓	ו	1]
(e)	π-bonding electrons are <u>delocalised</u> ✓		
	six π -electrons in benzene \checkmark four π -electrons in the intermediate \checkmark		
	π -electrons are not over one carbon atom / over five carbon atoms / p-orbitals in the intermediate	this must be stated in words to compare benzene and the	
	π-electrons are over the complete ring / all around the all six carbon atoms/ p-orbitals overlapping ✓		
	Quality of written communication for at least two sentences/statements with legible textorrect spelling, punctuation and grammar ✓		[6]
		[Total: 1	7]

Qu. Expected answers:

Marks:

3 (a) 1st stage

aromatic amine / named aromatic amine / structure ✓ sodium nitr<u>ite</u> / nitrous acid ✓ HCI/H₂SO₄ (but not conc) /H⁺ ✓ at <10°C ✓

which forms a diazonium salt / ion ✓

2nd stage

the product from the first stage mixed with the phenol **AW** \checkmark (in excess) hydroxide / alkali \checkmark

if more than four are given, mark any wrong reagents, conditions first

allow correct formulae for the reagents

[7]

(b) (i)

(ii) ...16... carbon and10..... hydrogen atoms

(c) Na / NaOH / OH etc ✓

(d)

$$O_3 \cdot Na^+$$
 $H_2N \longrightarrow SO_3$

allow any benzene rings as well as N=N circled, as long as no other groups are

[2]

[1]

[1]

allow 1 mark if they are both correct, but in the wrong boxes

only penalise a slip with SO₃⁻ Na⁺ once

[Total: 13]

[2]

Qu. **Expected answers:**

Marks:

4 (a) (i)

allow R CH NH2 and COOH in any order

[1]

they both have the H₂N-COOH group / or in words ✓

NOT just "they both have NH₂ and COOH"

R group is H in glycine and CH₂CH₂COOH in glutamic acid ✓

[2]

(b)

one -COO - ✓ both -COO - ✓ H₂N- and rest of

[5]

(c) glutamic acid/molecule with optical isomers ...

... is <u>chiral</u> ✓

... has four different / distinguishable groups attached to a carbon 🗸

NOT just "different atoms"

... the mirror images/isomers cannot be superimposed AW 🗸

one diagram showing two 3-D bonds not opposite each other, and not with angles looking like 90°

3-D diagram of the other isomer (allow ecf on one 3-D error) ✓

all groups correctly connected for glutamic acid in both diagrams ✓

glycine

only has three different groups / two groups are the same / 3-D diagram used to show symmetry ✓

7 marks

quality of written communication

for correct use and organisation of at least one technical term: *(in the correct place), non-superimposable, enantiomer, stereoisomer(ism), tetrahedral, assymetric ✓

[8]

[Total: 16]

Qu. Expected answers:

Marks:

5 (a) (i) addition (polymerisation) ✓

NOT additional [1]

(ii)

[1]

(iii) π-bond breaks ✓

many molecules join / a long chain forms / equation to show this using 'n' ✓

[2]

(b) alternating ✓

all four side groups placed above the chain with an alternating arrangement clearly shown by use of 3-D bonds ✓✓

where 1 mark is for an incorrect diagram, but "(alternating) 3-D /spacial arrangement of side chains" stated in words

[3]

(c) atactic has side chains irregular / random(ly arranged in space/3-D) ✓ ora

atactic has weaker intermolecular / Van der Waals' forces between the chains **✓ ora**

NOT just "weaker bonds"

chemically sensible suggestion why irregular side chains could give weaker forces – eg because chains can't get as close / less surface contact ✓ AW ora

[3]

[Total: 10]

peak at 1.2ppm identified as due to the CH₃ ✓

protons (and not the carbon) on the groups are identified ✓

relative peak areas / numbers above the peaks show ... the number of (equivalent) protons in each group / three protons on one carbon and one on the other carbon ✓ AW

quadruplet / 1:3:3:1 splitting (of the peak at 3.3ppm) shows... three protons on the neighbouring/adjacent carbon ✓

doublet / 1:1 splitting (of the peak at 1.2ppm) shows ... one proton on the neighbouring /adjacent carbon ✓

(iii) no of peaks: one ✓

splitting: none ✓

all four protons equivalent / in the same environment ✓

[6]

(not just R-CH₃ etc)

can be by Ha, Hb

etc

if the wrong structure is chosen allow ecf for: two peaks ✓, splitting ✓✓ (as last

2 marks for part (ii)) [3]

[Total: 14]