2 (2

1 (a) (i) alkene ✓ allow "C=C double bond"

ester ✓ [2]

i.

[1]

ii. C12H14O2 ✓

[1]

- b. same structural formula/order of bonds, different spacial arrangement AW ✓
 - description or diagram showing B and how it is different from A 🗸

[2]

c.

[2]

d. i. peak at 1680-1750 (cm⁻¹) due to C=O √

peak at 1000-1300 (cm $^{-1}$) due to C-O / \checkmark

[2]

ii. 2500-3300 / 3230-3550 (cm⁻¹) √

O-H /carboxylic acid/alcohol is not present in A ✓

allow 1 mark for ~500-1500 (cm-1) which is a unique fingerprint region etc

[2]

[Total: 12]

$$\begin{array}{c}
\delta^{-} \\
H - CN
\end{array}$$

$$\begin{array}{c}
\delta^{-} \\
H - C
\end{array}$$

$$\begin{array}{c}
O \\
NC
\end{array}$$

$$\begin{array}{c}
O \\
H - C
\end{array}$$

$$\begin{array}{c}
O \\
NC
\end{array}$$

$$\begin{array}{c}
O \\
NC
\end{array}$$

polarisation of C⁶⁺=O^{6−} and curly arrow breaking C=O ✓

curly arrow from lone pair on :CN⁻ to C ✓

structure of intermediate ✓

curly arrows from O^- to H-CN/H₂O and breaking the H-CN/H-OH bond \checkmark

allow just a curly arrow from from O to H

iii. nucleophilic addition ✓

[1]

[4]

e. lengthening the carbon chain AW ✓

[1]

f. i. heat/reflux with a suitable strong acid /acid / $H^+ \checkmark$ which is dilute / (aq) / stated concentration \checkmark

allow 'conc' for HCl [2]

ii. $C_6H_5CH(OH)CN + 2H_2O + H^+ \longrightarrow C_6H_5CH(OH)COOH + NH_4^+ \checkmark$

[1]

g. mandelic acid is chiral / has optical isomers /enantiomers ✓

synthetic gives a mixture / natural gives only one (optical) isomer

only <u>one</u> of the (optical) isomers is the (pharmacologically) active one AW ✓

ignore references to side effects and dosage [3]

h. i. C₆H₅CH(OH)CH₂NH₂ / 2-amino-1-phenylethanol any unambiguous formula/name ✓

[1]

ii. reduction / redox √

[1]

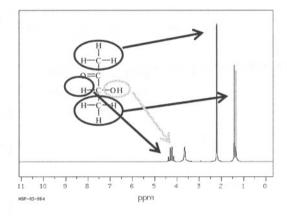
[Total: 14]

i.

low boiling point / easily turns to a gas AW ✓ 3 (a)

[1]

2,4-dinitrophenylhydrozine / 2,4-DNP(H) / Brady's reagent ✓


purify/recrystallise the product/solid (derivative) ✓

measure the melting point /mp ✓

compare the result with data book/known values ✓

[4]

j. i.

one mark for two peaks assigned √

two marks for all three √

[2]

ii. re-run in/add D₂O ✓ peak (due to OH) disappears √

[2]

iii. Peak at 1.4ppm

(1:1 due to) one H on the neighbouring /adjacent carbon ✓

Peak at 4.3ppm

(1:3:3:1 due to) three H on the neighbouring /adjacent carbon ✓

[2]

iv.

[1]

V. no of H/protons in the same (chemical) environment/of that 'type' ✓

[1]

[Total: 13]

4 (a) Correct structure of 3-nitrophenol or any multiple nitrated phenol ✓ [1]

k. M_r phenol (C_6H_6O) = 94.0 \checkmark

 M_r 4-nitrophenol ($C_6H_5NO_3$) = 139.0 \checkmark

expected mass/moles of nitrophenol from 100 $g = 148 g/1.06 \text{ mol (or ecf from wrong } M_r \text{s)} \checkmark$

at 27% yield gives 40 / 39.9 (g) (or ecf) ✓

last mark is for 0.27 x
expected mass to 2 or 3 sf [4]

conditions for nitration of benzene:

HNO₃ is concentrated ✓

conc H₂SO₄ is present √

heating or stated temp above 50°C √

[3]

explanation for greater reactivity of phenol lone pair from O atom is delocalised into the ring ✓

greater (π) electron density around the ring \checkmark

(the benzene ring in phenol) is <u>activated</u> √

attracts electrophiles/ *NO_2 more / makes it more susceptible to electrophiles AW \checkmark

[4]

quality of Written Communication mark for at least two legible sentences with correct spelling, punctuation and grammar

[1]

m.

allow bromination in any positions on the ring

[Total: 17]

[4]

281

5 (a) (i)

[1]

i. C₁₄H₁₀O₂ + 4[H]

 \longrightarrow $C_{14}H_{14}O_2$ \checkmark

allow ecf from (i)

[1]

n. delocalised electrons

electrons are spread over more than two atoms AW ✓

 π -bond

formed by overlap of p-orbitals/ diagram to show ✓

[2]

o. sodium nitrite + HCl / nitrous acid √

<10°C√

phenol/named example (added to the products from above) AW \checkmark alkaline conditions / OH $^- \checkmark$

example of an azo dye that could be formed from phenylamine,

[6]

[Total: 10]

	HO-C-(CH-)4-C-OH	H_C=C	
	H_N(CH_)_ENH_Z	н н 🗸	a page and a substitution of
-	$\begin{bmatrix} O & O & \\ II & & II \\ -C & -(CH_2)_4 & -C & -N & -(CH_2)_6 & -N \\ & I & & I \\ & & H & & H \end{bmatrix}$		
	onomers connected by NHCO √ rrect repeat shown √		
	condensation	addition	✓ for both

p. i.
$$PCl_5 / SOCl_2$$

q.

$$H_3N^+$$
— $(CH_2)_6$ — NH_3^+ \checkmark ^-O — C — $(CH_2)_4$ — C — O

allow 1 mark for: both
$$H_3N^+$$
— $(CH_2)_6$ — NH_2 and HO — C — $(CH_2)_4$ — C — O — $[2]$

ii. H R O Where
$$R = H$$
, CH_3 , CH_2OH or $CH_2C_6H_5 \checkmark$ [11]

iii. any three different chemically or biologically correct differences between amino acids and the nylon monomers $\checkmark \checkmark \checkmark$ - eg

- protein monomers are amino acids / nylon monomers are a (di)amine/base and a (di)acid
- protein monomers have different types/R groups / nylon monomers are two types/no variation
- protein monomers have stereo/optical isomers/are chiral
- protein monomers have higher melting points/form zwitterions

other possible answers include:

 nylon monomers have longer chain length/no other functional groups / no aromatic content / are symmetrical etc don't allow comparisons of solubility or M_r [3]

[Total: 13]

7 (a) (i) bromine as an electrophile

an electrophile accepts an electron pair √

NOT a lone pair

bromine is polarised/has + charge (centre)/dipole on Br-Br/Br* shown in diagram \checkmark

appropriate diagram showning a curly arrow from a double/ π bond to the ${\it Br}^{\it S+}/{\it Br}^{\it t}$ \checkmark

eg

[3]

iv. comparison of reactivity of cyclohexene and benzene benzene is (more) stable / more energy required ✓

benzene (π) electrons are delocalised \checkmark

benzene has lower electron/- charge density ✓

so bromine is less polarised /attracted to it / benzene is less susceptible to electrophiles

ora for cyclohexene

[4]

quality of written communication mark for any two of the the terms:

delocalised/localised, π -electrons/bonds/system, electron density, dative covalent, activation/stabilisation energy, halogen carrier, heterlytic fission, addition/substitution, polarity used appropriately \checkmark

[1]

s. i. iodobenzene because ...

Br is more electronegative than I ✓ ord

so the I atom will be positive δ /the electrophile \checkmark

[2]

ii.
$$C_6H_6 + IBr \longrightarrow C_6H_5I + HBr \checkmark$$

or ecf giving $C_6H_5Br + HI$

[1]

[Total: 11]