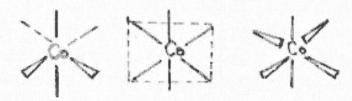
Question	Expected Answers	Marks
1 (a) (i) (ii)	6 Species with (lone) pair of electrons Capable of being donated / forms a dative covalent bond / co-ordinate bond to a metal ion. (allow suitable diagram)	1 1 1
(b) (i) (ii) (iii) (c) (i)	[Co(H ₂ O) ₆] ²⁺ is octahedral [CoCl ₄] ²⁻ is tetrahedral (both needed for 1 mark) pink to blue <u>Ligand</u> substitution / exchange/displacement 1 mark for correct 3-D diagram of cis isomer	1 1 1
(ii)	1 mark for correct 3-D diagram of trans isomer (see additional sheet for diagrams. Allow planar diagrams if two appropriate 90° angles are shown) Geometric / cis - trans	1
(d)	1 mark for using cis isomer 1 mark for correct 3-D diagrams which are mirror images of each other. (see additional sheet for diagrams. If all diagrams are drawn as non-3d do not penalise in (d))	1 1 Total: 11

Question	Expected Answers	Marks
2 (a)	Correctly drawn lower energy d-orbital (see additional sheet for diagrams)	1
	Correctly drawn high energy d-orbital	1
	(see additional sheets for diagrams)	
	Allow one mark if transposed.	
(b)	Need at least 1 electron in lower energy d-orbitals and a space in the higher energy d-orbitals. (allow d-	
	orbitals are partially filled) Promotion of an electron absorbs visible light Colour absorbed depends upon energy gap / energy	1
	gap matches energy from visible light / idea that only part of visible light absorbed / $\Delta E = hf$	1
	Remaining light transmitted to give colour / transmitted light is no longer white (Accept appropriate diagrams for the marks)	1
(c)	Isomer is [Cr(H ₂ O) ₆]Cl ₃	1
	Yellow /green light is absorbed Purple light transmitted / violet and red transmitted	1
	(to give purple colour).	1
		Total: 9
		iotai: 9

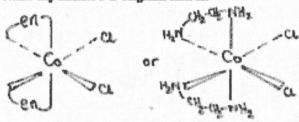
2815

Que	stion		Expected Answers	Marks
3.	(a)		Stainless steel + corrosion resistant / Alloys / making tools + very hard Chrome plating + prevents rusting / corrosion	1
	(b)	(i)	All oxidation number worked out to show that none have changed (Cr = +6, H = +1, O = -2)	1
		(ii)	Yellow to orange	1
		(iii)	NaOH or another suitable alkali /OH⁻ (not H₂O)	1
	(c)	(i)	Brown solution/brown precipitate/black solid Add starch to get blue / black colour	1
		(ii)	Titration / volumetric analysis using sodium thiosulphate(with starch indicator) (allow from equation)	1
			$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$	1
			1 mol $Cr_2O_7^{2-} = 6 \text{ mols } S_2O_3^{2-}$	1
			the grant of the badyane of the needs which are a district to the second	
			(healign eliques, evil) of	Total: 9

Question	Expected Answers	Marks
4. (a)	A = Platinum(electrode) B = H ⁺ (aq) / HCl(aq) / other suitable acid C = Voltmeter / galvanometer D = Cl ₂ (g) State symbols needed for B and D All correct = 2, 3 correct = 1	2
(b) (i)	Arrow marked on or close to wire via voltmeter pointing from hydrogen half cell to chlorine half cell Electrons flow to half cell with more +ve standard electrode potential	1
(ii)	Pressure = 1 Atm / 100 kPa Temp = 298 K / 25 ⁰ C Concentration = 1 mol dm ⁻³ All 3 correct = 2 marks 2 correct = 1 mark	2
(c)	The standard electrode potential for ClO ₃ / ½Cl ₂ is more positive than that of ½ Cl ₂ / Cl ClO ₃ has a greater tendency to gain electrons than Cl ₂ / ClO ₃ is a better oxidising agent than Cl ₂ Alternative:	1
	Because E ^o is positive, the reaction will go from left to right therefore CIO ₃ is reduced so it must be a better oxidising agent than chlorine.	
		Total: 8

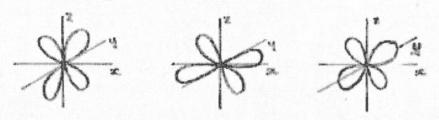

2815

Question	Expected Answers	Marks
5.	Blue solution / it goes blue	1
	Correct oxidation number for Cu in Cu ₂ O (+1), CuSO ₄ (+2), and Cu (0)	1
	Cu ⁺ / Cu ₂ O is oxidised to Cu ²⁺ /CuSO ₄ and Cu ⁺ / Cu ₂ O is reduced to Cu This is disproportionation	1
	Cu(I) stable as a solid / unstable in aqueous solution Cu(II) stable in aqueous solution / stable as solid Cu(0) stable as the element/solid	1
	QWC	1
	1 mark to be awarded for an answer that includes two complete sentences with good use of basic grammar.	1
	TO type of test that sale evaluation and the sale of t	Total: 8
	Rel most og tilw nubbset erb og til er skettellen. I er sket stil er til og er sket ere Gill most og til er skettellen.	Total. o
	sainolás ne dibagit politicae de de	

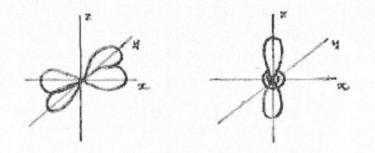

2815/6 Transition Elements January 2006

Additional sheet

1. (c) (l) Allow any suitable 3-D diagrams. Possibilities to include:



(d) Allow any suitable 3-D diagrams much as:



2 (a)

Correct lower energy d-orbitals include:

Correct higher energy d-orbitals include:

