Qı 2

Question		Expected Answers	Marks	
(a)		partial dissociation: HCOOH ⇒ H* + HCOO ✓	[1]	
(b)	(i)	pH = −log (1.55 × 10 ⁻³) = 2.81/2.8 ✓ [H ⁺] deals with negative indices over a very wide range/pH makes numbers manageable /removes very small numbers ✓	[2]	
	(ii)	$K_a = \frac{[H^{+}(aq)][HCOO^{-}(aq)]}{[HCOOH(aq)]} \checkmark \text{ (state symbols not needed)}$	[1]	
	(iii)	$K_{a} = \frac{[H^{+}(aq)]^{2}}{[HCOOH(aq)]} = \frac{(1.55 \times 10^{-3})^{2}}{0.015}$ $= 1.60 \times 10^{-4} \text{ (mol dm}^{-3}) \checkmark$ $p K_{a} = -\log K_{a} = -\log (1.60 \times 10^{-4}) = 3.80 \checkmark$	[3]	
	(iv)	Percentage dissociating = $\frac{(1.55 \times 10^{-3}) \times 100}{0.015} = 10.3 \% / 10\% \checkmark (working not required)$		
			[1]	
(c)	(i)	HCOOH + NaOH → HCOONa + H₂O √ state symbols not needed	[1]	
	(ii)	n(HCOOH) = $0.0150 \times 25.00/1000 = 3.75 \times 10^{-4} \checkmark$ volume of NaOH(aq) that reacts is 30 cm ³ \checkmark so [NaOH] = $3.75 \times 10^{-4} \times 1000/30 = 0.0125$ mol dm ⁻³ \checkmark	[2]	
	(iii)	$K_w = [H^+(aq)][OH^-(aq)] \checkmark$ pH = -log(1 × 10 ⁻¹⁴ /0.0125) = 12.10/12.1 \checkmark (calc 12.09691001)	[3]	
	(iv)	metacresol purple \(\square \) pH range coincides with pH change during sharp rise OR pH 6-10 /coincides with equivalence point/end point \(\square \)	[2]	
			Total: 16	

Question	Expected Answers	Marks
2 (a)	$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} \checkmark$	[1]
(b) (i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[2]
(ii)	$K_c = \frac{0.32^2}{0.14 \times 0.04} = 18.28571429 \checkmark$ = 18 (to 2 sig figs) \checkmark no units \checkmark (or ecf based on answers to (i) and/or (a))	[3]
(c)	\mathcal{K}_c is constant \checkmark Composition of mixture is the same \checkmark	[2]
(d)	(Forward) reaction is exothermic (ora) \checkmark because equilibrium moves to the left / K_c is less \checkmark	[2]
(e) (i)	$I_2(aq) + H_2S(g) \longrightarrow 2HI(aq) + S(s)$ species and balance \checkmark state symbols: accept (s) for I_2 ; (aq) for H_2S \checkmark	[2]
(ii)	amount I ₂ reacted = 1.89 mol / HI formed = 3.44 mol \checkmark theoretical amount HI produced = 3.78 mol/484 g \checkmark % yield = $\frac{3.44 \times 100}{3.78}$ or $\frac{440 \times 100}{484}$ = 91.0 % \checkmark [HI] = $\frac{3.44 \times 1000}{750}$ = 4.58/4.59 mol dm ⁻³ \checkmark	[3]
(iii)	pH = -log 4.59 = -0.66 ✓	[2]
	Sept. In the second of the sec	Total: 17

Que 4

Question	Expected Answers	Marks
3	From graph, constant half-life 🗸	
	Therefore 1st order w.r.t. [CH ₃ COCH ₃] ✓	[2]
	From table, rate doubles when [H⁺] doubles ✓	
	Therefore 1st order w.r.t. [H ⁺]	[2]
	From table, rate stays same when [I₂] doubles ✓	
	Therefore zero order w.r.t. [I2]	
	Order with no justification does not score.	[2]
	rate = K[H ⁺][CH ₃ COCH ₃] ✓	Ton 1
	(from all three pieces of evidence)	
	$k = \frac{\text{rate}}{[H^+][CH_3COCH_3]} / \frac{2.1 \times 10^{-9}}{0.02 \times 1.5 \times 10^{-3}} \checkmark$	
	$^{\kappa}$ [H ⁺][CH ₃ COCH ₃] $^{\prime}$ 0.02 x 1.5 x 10 ⁻³ *	
	$= 7.0 \times 10^{-5} \checkmark \text{dm}^3 \text{mol}^{-1} \text{s}^{-1} \checkmark$	[4]
	accept 7×10^{-5}	[-1]
	rate determining step involves species in rate equation ✓	
	two steps that add up to give the overall equation \checkmark	
	The left hand side of a step that contains the species in	
	rate-determining step 🗸	
	i.e., for marking points 2 and 3:	
	$CH_3COCH_3 + H^{\dagger} \longrightarrow [CH_3COHCH_3]^{\dagger}$ $[CH_3COHCH_3^{\dagger}] + I_2 \longrightarrow CH_3COCH_2I + HI + H^{\dagger}$	
	[CI 13COT ICI 13] · 12 — CI 13COCI 121 · FII · FI	183
	organises relevant information clearly and coherently,	[3]
	using specialist vocabulary where appropriate	
	Use of the following four words/phrases: constant, half-life, order, doubles/x2 √	-
	constant, nati-life, order, doubles/x2 *	[1]
		h 4
		Total: 14

Jan 2006

Questic	on		Expected Answers	Marks
4 (a)	(i)	(+)1 ✓	[1]
		(ii)	Look for atoms bonded together. AND other lone pairs.	
(b)	(i)	C ₁₃ H ₁₈ O ₂ ✓	[1]
		(ii)	any chemical that reacts to produce gas: e.g. carbonate and $CO_2 \checkmark$ accept: metal more reactive than Pb and H_2	
			balanced equation to match chemical added 🗸	[3]
(c)		M_r (Lidocaine) = 236 \checkmark Moles Novocaine = $100 \times 10^{-3}/236 = 4.24 \times 10^{-4} \checkmark$ Concentration of Novocaine = $4.24 \times 10^{-4} \times (1000/5)$ = $0.0847/0.0848/0.085$ mol dm ⁻³ \checkmark	[3]
(d)		mass $C = 12 \times \frac{3.74}{44.0} = 1.02 g /$	
			moles $CO_2 = \frac{3.74}{44} = 0.085 \text{ mol} \checkmark$	
			mass H = $\frac{2}{18}$ × 0.918 = 0.102 g /	
			moles $H_2O = \frac{0.918}{18} = 0.051 \text{ mol} \checkmark$	[2]
			ratio $C: H = \frac{1.02}{12} : \frac{0.102}{1} = 0.0850 : 0.102 = 5 : 6 / 10 : 12/$	
			ratio CO_2 : $H_2O = 5: 3 / 10: 6 \checkmark$ mass $O = 1.394 - (1.020 + 0.102) = 0.272 g$	
			/ using 1.394 g eugenol and $M_r = 164$, shows that 1 molecule contains 2 atoms of $O \checkmark$	[2]
			∴ molecular formula = C10H12O2 ✓	[1]
				Total: 13