Question		Expected answers	Marks
3 (a)		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ (1); (Iron is a transition element since this ion has an) incomplete set of 3d electrons / aw (1)	2
(b)		Iron in the Haber process / Iron to catalyse reaction of nitrogen and hydrogen / iron in the synthesis of ammonia (1)	1
(c)	(i)	Calculation of moles / mole ratio (1) Na = 1.21, Fe = 0.603 and O = 2.41; Divide by smallest to give correct molar ratio (1) OR Calculation of relative formula mass (1); Working out to get the same percentage compositions (1)	2
	(ii)	+6 (1)	1
(d)	(i)	$2l \rightarrow l_2 + 2e (1)$	1
	(ii)	$FeO_4^{2-} + 8H^+ + 4I^- \rightarrow Fe^{2+} + 4H_2O + 2I_2$ Correct reactants and products (1); Balancing (1)	2
	(iii)	Colour after is orange / yellow / brown (solution) (1)	1
·			Total = 10

Question	Expected answers	Marks
4	Any eleven from Bonding and shape Dative / coordinate bonding – this must be stated in words (1); Water is an electron pair donor / ligand is an electron pair donor / lone pair on oxygen (1); Metal ion accepts electron pair (1); Octahedral / drawing of octahedral complex (1)	12
	Water In both cases central oxygen is surrounded by four electron pairs (1); In gaseous water (2 bond pairs and) 2 lone-pairs (1); In gaseous water lone pair-lone pair repulsion is greater than other electron pair repulsions (1); Bond angle is 104° – 105° (1); In complex one dative bond is more like a bond pair / water has only one lone pair (1); So less repulsion from the lone pairs (1); bond angle in complex is 106° – 108° / bond angle is slightly bigger than 104° (1)	
	Distinguishing Reagent (1) e.g. aqueous sodium hydroxide / add aqueous ammonium thiocyanate / aqueous ammonia; Result of test with Fe ²⁺ (1) e.g. green ppt with Fe ²⁺ and NH ₃ or NaOH and no reaction with SCN ⁻ ; Result with Fe ³⁺ (1) e.g. orange ppt with Fe ³⁺ and NH ₃ or NaOH and blood red with SCN-; Suitable equations (2) e.g. Fe ²⁺ (aq) + 2OH ⁻ (aq) → Fe(OH) ₂ (s) or [Fe(H ₂ O) ₆] ³⁺ + SCN ⁻ → [Fe(SCN)(H ₂ O) ₅] ²⁺ + H ₂ O	
	And	
	QWC – award one mark for answers using the correct scientific terminology (1)	Total = 12

[3]

1. (a)(i) voltage/PD (1)

of a cell when the electrode is **connected** to a reference electrode/ hydrogen electrode (1)

under standard conditions/one of standard conditions specified (1)

- (ii) argument based on iron being the more negative system/
 based on iron releasing electrons/ argument based on dichromate(VI)
 being more positive/ based on dichromate(VI) accepting electrons [1]
- (iii) $14H^{+} + 6Fe^{2+} + Cr_{2}O_{7}^{2-} \rightarrow 2Cr^{3+} + 7H_{2}O + 6Fe^{3+}$

species on correct sides (1)

balancing (1) [2]

(b) green/yellow (1)

red and blue absorbed (1) [2]

(c) orbitals split 2 and 3 (1)
2 above 3 (1)
[2]

[Total: 10]

2815/06	Mark Scheme	January 2003
2. (a)	zinc (1)	[1]
(b)(i)	4.46×10^{-3} (mol)	[1]
(ii)	2.23 x 10 ⁻³ (mol)	[1]
(iii)	4.46×10^{-3} (mol)	[1]
(iv)	0.283 g (1)	
	56.6% (1)	[2]
(c)(i)	from brown/yellow (1)	
	to colourless/white (1)	[2]
(ii)	change blue to colourless more distinct	[1]
(d)	any eg bronze/cupronickel (1)	
	relevant use eg statues/coins/medals (1)	[2]
		[Total: 11]

3. (a)(i) $[Fe(NH_3)_4Cl_2]^+$

[1]

(ii) octahedral shape – clearly 3D(1)

cis and trans forms drawn (1)

 $\begin{bmatrix} NH_3 & \\ H_3N & CI \\ CI & NH_3 \end{bmatrix}^+$ $NH_3 & NH_3 & CI$

cis with 2Cl at 90°

trans with 2CI at 180°

labelling (1)

[3]

(iii) 6

[1]

(b) anti cancer drug (1)

destroys cell DNA (1)

[2]

[Total: 7]

```
5. most common oxidation states are +2 and +3 (1) 
+2 is more stable than +3 (1) 
stable aqueous ion is [Co(H_2O)_6]^{2^+}(1) 
this complex is pink (1) 
[CoCl_4]^{2^-}(1) 
this complex is blue (1) 
+3 oxidation stabilised by complexing with ammonia (1) 
[Co(NH_3)_6]^{3^+}(1) 
QWC [1] 
[8] Max [6] 
plus QWC [1]
```

[Total: [7]

(a) Forward and reverse reactions at same rate ✓
 Achievable from either direction ✓, requires closed system ✓
 concentrations of reactants and products are constant ✓

max: [2]

(b) (i) $K_c = \frac{[CH_3OH(g)]}{[CO(g)][H_2(g)]^2} \checkmark \checkmark 1 \text{ mark for top; 1 mark for bottom}$

[2]

(ii)
$$K_c = \frac{(2.6 \times 10^{-5})}{(3.1 \times 10^{-3})(2.4 \times 10^{-2})^2} \checkmark = 14.6 \checkmark (dm^6 mol^{-2})$$

[2]

(c) (i) Why did the equilibrium move to the right fewer molecules on right ✓

reaction relieves increase in pressure ✓

[2]

(ii) What is the effect, if any, on K_c

K_c stays same √

[1]

(iii) Rate changes

Rate increases √

Increased collisions/more concentrated ✓

Rates initially forward faster than reverse √

At equilibrium, rates same

[4]

(d) (i) K_c decreases so products decrease/reactants increase ✓
 Therefore equilibrium moves to the left/to endothermic side ✓
 2nd mark dependent on first.

[2]

(ii) ∆H is negative because of equilibrium change in (i) ✓Mark consequential on (i)

[1]

(iii) Partial pressure decreases because less CH₃OH is now present ✓

[1]

[Total: 17]

2. **(a) (i)** $m(NH_4NO_3) = 80$ \checkmark

moles
$$N_2O$$
 = moles NH_4NO_3 = 100/80 = 1.25 mol \checkmark mass N_2O = 1.25 x (28 + 16) = 55 g \checkmark

[3]

(ii) nitrogen in NH₄⁺: -3 → +1 / increases by 4 ✓ nitrogen in NO₃⁻: +5 → +1 / decreases by 4 ✓

[2]

(b) (i) 1st order has a constant half life ✓
 Evidence from graph, either drawn or stated below with 2 half lives ✓
 half life approx 52 s√

[3]

(ii) rate = $k[N_2O(g)]$ \checkmark

[1]

(iii) evidence of tangent on graph \checkmark rate = 0.00524 \checkmark mol dm⁻³ s⁻¹ (allow ± 0.005 : i.e. values in range 0.00475 – 0.00575 mol dm⁻³ s⁻¹)

[2]

(iv) 0.00524 (ans to (ii)) = $k \times 0.400$ $k = 0.0131 \checkmark s^{-1} \checkmark$

[2]

(v) rate determining step involves 1 molecule of N_2O \checkmark equation shows 2 mol N_2O reacting \checkmark

[2]

(c) Increases the pressure/rate increases ✓

Gives out heat ✓

Forms oxygen \longrightarrow more efficient combustion \checkmark

moles of products > moles of reactants ✓

[2 max]

[Total: 17]

3. (a)

Acid is a proton/H⁺ donor ✓

Base is a proton/H⁺ acceptor ✓

Conjugate acid has H⁺ more than conjugate base ✓

Equation showing acid-base pairs <

2 acid-base pairs labelled correctly ✓

Dilute acid has small number of moles dissolved per volume ✓

Weak acid has partial dissociation ✓

[7]

Quality of Written Communication

At least **two** complete sentences that are legible and where the spelling, punctuation and grammar allow the meaning to be clear. At least one equation shown.

[1]

(b) (i)

$$K_a = \frac{[H^{+}(aq)][CN^{-}(aq)]}{[HCN(aq)]} \checkmark$$

[1]

(ii)

$$K_{a} = \frac{[H^{+}(aq)]^{2}}{[HCN(aq)]} \qquad \therefore 4.9 \times 10^{-10} = \frac{[H^{+}(aq)]^{2}}{0.010} \checkmark$$

$$[H^{+}(aq)] = \sqrt{\{(4.9 \times 10^{-10}) \times (0.010)\}} = 2.2 \times 10^{-6} \text{ mol dm}^{-3} \checkmark$$

$$pH = -\log[H^{+}(aq)] = -\log 2.2 \times 10^{-6} = 5.65/5.66/5.7 \checkmark$$

$$(accept calculator value)$$

[3]

[Total: 12]

C : H : O
$$= 66.7/12 : 11.1/1 : 22.2/16 \checkmark$$

$$= 5.56 : 11.1 : 1.39$$

$$= 4 : 8 : 1$$

empirical formula = C₄H₈O ✓

48 + 8 + 16 = 72 which is half of M_r

Therefore molecular formula = $C_8H_{16}O_2$ \checkmark

Structural formula = $CH_3(CH_2)_6COOH \checkmark$

[4]

(ii) caprylic acid is a longer molecule/contains more electrons ✓ caprylic acid has more van der Waals forces between molecules ✓ caprylic acid has a higher boiling point / is less volatile ✓

[2 max]

(b)
$$[H^{+}(aq)] = K_{w} / [OH^{-}(aq)] \checkmark = 1.00 \times 10^{-14} / 0.500 = 2.00 \times 10^{-14} \text{ mol dm}^{-3} \checkmark$$

pH = $-\log[H^{+}(aq)] = -\log 2 \times 10^{-14} = 13.699 / 13.7 \checkmark (calculator value: 13.69897)$

[3]

moles NaOH in 25.00 cm³ = moles NaOH = 0.0125 mol \checkmark

moles **A** in 21.40 cm³ = moles NaOH = 0.0125 mol \checkmark

moles **A** in 250 cm³ = $0.0125 \times 250/21.40 = 0.146 \text{ mol}$ / [A] = $0.584 \text{ mol dm}^{-3}$ \checkmark

0.146 mol **A** has a mass of 10.8 g

molar mass of $A = 10.8/0.146 = 74 \text{ g mol}^{-1} \checkmark$

Therefore A is propanoic acid / CH₃CH₂COOH ✓

[5]

[Total: 14]