2815/01 Trends and Patterns

Question	١	Expected Answers	Marks	Additional Guidance
1 (a)		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹ (1)	1	
(b) (i		Correct formula of a copper(II) complex ion e.g. CuCl ₄ ²⁻ / [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ / [Cu(H ₂ O) ₆] ²⁺ (1) Correct colour (1) e.g. CuCl ₄ ²⁻ green/yellow,	1	
(i	ii)	Correct colour (1) e.g. $CuCl_4^{2-}$ green/yellow, $[Cu(NH_3)_4(H_2O)_2]^{2+}$ dark blue and $[Cu(H_2O)_6]^{2+}$ blue	1	Allow ecf from a known copper compound
(i	iii)	Coordinate bond / dative bond (1) Lone pair donated by ligand / lone pair accepted by copper (1)	2	
(c) (i		Blue precipitate / blue solid	1	Can get credit for ppt from state symbol of correct product in part (ii)
(i	ii)	$Cu^{2^{+}} + 2OH^{-} \rightarrow Cu(OH)_{2} / [Cu(H_{2}O)_{6}]^{2^{+}} + 2OH^{-}$ $\rightarrow Cu(OH)_{2} + 6H_{2}O / [Cu(H_{2}O)_{6}]^{2^{+}} + 2OH^{-} \rightarrow$ $Cu(H_{2}O)_{4}(OH)_{2} + 2H_{2}O (1)$	1	Allow correct multiples Ignore state symbol
(d) (i	i)	Mole ratio C:Cu:K:N = 0.0320:0.00800:0.0240:0.0320 (1) K ₃ CuC ₄ N ₄ (1)	2	Allow the four masses ÷ appropriate A _r if mole ratio not calculated
				Allow any order of atoms Can award formula mark if given in part (ii) Allow ecf from wrong mole ratio
(i	i)	[Cu(CN) ₄] ³⁻ / CuC ₄ N ₄ ³⁻ (1)	1	Allow any order of atoms with or without brackets Allow ecf from wrong formula
		Total	10	9 :3::::

Question	Expected Answers	Marks	Additional Guidance
3 (a)	$2Cr^{3+} + 3H_2O_2 + 10OH^- \rightarrow 2CrO_4^{2-} + 8H_2O$ Correct reactants and products (allow e ⁻ and OH ⁻ on both left and right) and correct molar ratio of Cr^{3+} and H_2O_2 (1); Balanced (1)	2	For the second mark the OH ⁻ and e ⁻ must be cancelled down
(b)	Moles $MnO_4^- = 0.000463$ (1) Moles $Fe^{2^+} = 5 \times moles MnO_4^- / 0.002315$ (1)	4	Allow ecf within the question
	$M_{\rm r} = 392 / 391.8 (1)$		ecf is 0.907 ÷ moles of Fe ²⁺ Allow three marks for 392 / 391.8 with no working
	$x = 6$ (1) dependent on M_r given		ecf is (M_r – 283.8) ÷ 18 Allow one mark for 6 with no working
	Total	6	

2815/06 Transition Elements

Question		Marks
1 (a) (i)	+6 / 6+ / 6	1
(ii)	H ₂ Salt bridge Pt	
(b)	Pt $Cr_2O_7^{2-}/Cr^{3+}$ H_2 and H^+ (state symbols not required) Voltmeter and salt bridge [if no liquid levels lose this mark] Both Platinum electrodes labelled $Cr_2O_7^{2-}$ / Cr^{3+} (/ H^+ not needed for mark) Temp 298K or 25°C + Pressure 1 Atm / 100 kPa/ 101 KPa / 1 bar / 10 ⁵ Pa + concentration 1 mol dm ⁻³ (can take from diagram) or equimolar mixture of $Cr_2O_7^{2-}$ / Cr^{3+}	1 1 1 1
(6)	Equilibrium would move from right to left / backwards	1
2 (a)	Total	8
	$[Co(H_2O)_6]^{3^+}$ E^{Θ} for $[Co(H_2O)_6]^{3^+} + e^- \Rightarrow [Co(H_2O)_6]^{2^+}$ is more positive This reaction is more likely to proceed from left to right / $[Co(H_2O)_6]^{3^+}$ is more likely to accept electrons / be reduced	1 1 1
(b)	Pink	1
	$2[Co(NH_3)_6]^{3^+} + Fe \rightarrow 2[Co(NH_3)_6]^{2^+} + Fe^{2^+}$ idea that E^Θ is positive / idea of cobalt complex equilibrium tending to go from left to right whilst Fe^{2^+} / Fe equilibrium goes from right to left / calculation of cell emf ((+)0.55V).	1
	Total	6

	Expected Answers	Marks
3 (a) (i)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰	1
(ii)	Colour requires electrons in d-orbitals and a space for promotion / colour	
/	results from transitions of electrons between d-orbitals / colour results	
	from a partially filled d-subshell Cu ⁺ has a full d-subshell	1
(b)	Ou has a full set of 50 orbitals / is 50 / flas a full d-substitell	
	Energy levels of d-orbitals are split	1
	Different ligands interact differently with d-orbitals / ΔE changes for	1
	different ligands	
	Size of ΔE determines frequency / wavelength / colour of visible light	4
	absorbed	1
(c)	_/ _/	
	Disproportionation or explained eg copper(I) goes to copper(II) and copper / copper(I) is oxidised and reduced.	1
	2CuCl → CuCl ₂ + Cu / 2Cu ⁺ → Cu ²⁺ + Cu	1
	CuCl ₂ / Cu ²⁺ / [Cu(H ₂ O) ₆] ²⁺ and CuCl ₄ ²⁻ is blue-green and Cu is reddish-	1
/ I)	pink (both needed for 1 mark)	
(d)	Moles $S_2O_3^{2-} = 0.00198$ mol	1
		•
	1 mole $S_2O_3^{2-}$ = 1 mole Cu^{2+} / 25 cm ³ Cu^{2+} contains 0.00198 moles	1
	250 cm³ of Cu²+ contains 0.0198 moles	1
	0.0198 moles Cu has a mass of 0.0198 x 63.5 g = 1.26 g (1.2573)	1
	% Cu = 1.26/1.65 x 100 = 76.2% (allow 76.0% - 76.4%)	1
	Allow ecf after each stage of the calculation	
	Total	14

Geometric or cis and trans Accept other possible projections. Brackets and charge are NOT required for the mark 2 (c) Optical cis isomer correct mirror images (allow ecf) Accept other projections. Brackets and charge are not required. Accept a loop for en If optical given in (a) allow cis/trans and correct structures in (c) unless cis/trans drawn in (b) Reverse names but correct structures = 4 marks for (a), (b) and (c) combined. NB only two marks available for cis/trans diagrams regardless of labels	Question	Expected Answers	Marks
Accept other possible projections. Brackets and charge are NOT required for the mark 2 (c) Optical cis isomer correct mirror images (allow ecf) Accept other projections. Brackets and charge are not required. Accept a loop for en If optical given in (a) allow cis/trans and correct structures in (c) unless cis/trans drawn in (b) Reverse names but correct structures = 4 marks for (a), (b) and (c) combined.	4 (a)	Geometric or <i>cis</i> and <i>trans</i>	1
cis isomer correct mirror images (allow ecf) Accept other projections. Brackets and charge are not required. Accept a loop for en If optical given in (a) allow cis/trans and correct structures in (c) unless cis/trans drawn in (b) Reverse names but correct structures = 4 marks for (a), (b) and (c) combined.	(b)	Accept other possible projections.	
Accept other projections. Brackets and charge are not required. Accept a loop for en If optical given in (a) allow cis/trans and correct structures in (c) unless cis/trans drawn in (b) Reverse names but correct structures = 4 marks for (a), (b) and (c) combined.		Brackets and charge are NOT required for the mark	2
Accept other projections. Brackets and charge are not required. Accept a loop for en If optical given in (a) allow <i>cis/trans</i> and correct structures in (c) unless <i>cis/trans</i> drawn in (b) Reverse names but correct structures = 4 marks for (a), (b) and (c) combined.	(c)	Optical	1
Accept other projections. Brackets and charge are not required. Accept a loop for en If optical given in (a) allow <i>cis/trans</i> and correct structures in (c) unless <i>cis/trans</i> drawn in (b) Reverse names but correct structures = 4 marks for (a), (b) and (c) combined.			
Total 6		Accept other projections. Brackets and charge are not required. Accept a loop for en If optical given in (a) allow <i>cis/trans</i> and correct structures in (c) unless <i>cis/trans</i> drawn in (b) Reverse names but correct structures = 4 marks for (a), (b) and (c) combined. NB only two marks available for <i>cis/trans</i> diagrams regardless of labels	

	Expected Answers	Marks
5	Co-ordination number is the number of dative covalent / co-ordinate bonds formed (with central transition metal / ion) Hyp Ca	1
	Suitable charge / brackets needed for these examples	
	Square planar tetrahedral octahedral	
	90° 109.5° 90°	
	Two marks for each type with suitable example and correct name of shape and bond angle. Clear 3-D diagram with correct bond angle for a correct complex will receive 2 marks	6
	$[Co(H_2O)_6]^{2^+} + 4Cl^- \Rightarrow [CoCl_4]^{2^-} + 6H_2O$ / other suitable correct equations	1
	Shape changes from octahedral to tetrahedral	1
	Co-ordination number changes from 6 to 4 } } 1 mark for both Charge changes from +2 to -2 }	1
	(Mark for co-ordination number and charge can be taken from equation	
	Quality of Written Communication:	
	1 mark awarded for the correct use in context of at least 2 of the following terms;	_
	Square planar, tetrahedral, octahedral, dative, covalent, co-ordinate,	1
	Total	11

2816/01 Unifying Concepts in Chemistry/ Experimental Skills 2 Written Paper

Question	Expected Answers	Marks
1(a)	$K_{c} = \frac{[H_{2}][I_{2}]}{[HI]^{2}} \checkmark$	1
1(b)(i)	HI: 0.28 ✓ H ₂ : 0.11 ✓	2
1(b)(ii)	Use of $K_c = \frac{0.11 \times 0.11}{0.28^2}$ to generate a calculated value \checkmark = 0.15 \checkmark (2 significant figures) (calc. value: 0.154336735) no units \checkmark There must be some response here, not left blank.	3
	If [HI] = 0.39 mol dm ⁻³ (common mistake), K_c = 0.07955292571 (calc value) = 0.080 to 2 sig figs Do NOT accept 0.08 mol dm ⁻³ (1 significant figure)	
1(c)	K_c doesn't change ✓Composition stays the same OR equilibrium does not move ✓	2
1(d)	K _c increases ✓ (forward) reaction is endothermic OR reverse reaction is exothermic ✓	2
1(e)	I: $CI = \frac{78.15}{127}$: $\frac{21.85}{35.5}$ OR 0.615 : 0.615 A: ICI OR any multiple, eg I ₂ CI ₂ , etc \checkmark ICI with no working scored 2 marks.	5
	HI + $\text{Cl}_2 \longrightarrow \text{ICI} + \text{HCI} \checkmark$ ACCEPT 2HI + $\text{Cl}_2 \longrightarrow \text{2ICI} + \text{H}_2$ Accept multiples from identification of A . Accept equation based on an incorrect formula for A but ONLY if a compound of I and CI	
1	B: I_2CI_6 2HI + $4CI_2$ \longrightarrow I_2CI_6 + 2HCI \checkmark ACCEPT 2HI + $3CI_2$ \longrightarrow I_2CI_6 + H_2 \checkmark Accept equation based on an incorrect formula for B but ONLY if a compound of I and CI	
	Total:	15

Question	Expected Answers	Marks
2(a)	3 ✓	1
2(b)	$k = \frac{6.90 \times 10^{-7}}{(2.80 \times 10^{54})^2 \times 1.44 \times 10^{53}} \checkmark$ = 6.11 x 10 ³ \checkmark (calculator 6.111819728 × 10 ³) units: dm ⁶ mol ⁻² s ⁻¹ \checkmark ACCEPT 6.1 × 10 ³ up to calculator value If expression is upside down, calculated value = 1.636173913	3
0(.)(!)	1.6 up to calculator value would score 1 mark for the numerical value ECF units dm ⁻⁶ mol ² s ¹ If square is missed, calculated value = 1.711309524 1.7 up to calculator value would score 1 mark for the numerical value ECF units dm ³ mol ⁻¹ s ⁻¹	
2(c)(i)	Curve downwards with slope gradually levelling off ✓	1
2(c)(ii)	Measure its gradient OR slope \checkmark (Tangent) at $t = 0$ OR at start \checkmark Either mark could be from triangle shown on graph with y/x	2
2(c)(iii)	Half-life is constant ✓	1
2(d)(i)	Curve upwards with slope gradually getting steeper ✓	1
2(d)(ii)	rate × 9 OR 3 ² ✓ order = 2 (with respect to NO) ✓ Each marking point is independent	2
2(d)(iii)	$rate \times 2^2 \times 3 = \times 12 \checkmark$	1
	Total	12

Question	Expected Answers	Marks
3(a)	pK _a = 2.82 ✓	1
	calculated value = 2.823908741	
	ACCEPT 2.8 up to calculator value	
3(b)(i)		1
. , . ,	$K_{a} = \frac{[H^{+}][HSO_{3}^{\$}]}{[H_{2}SO_{3}]} \checkmark$	
	[n ₂ SO ₃]	
2/6\/::\	2.1.0	3
3(b)(ii)	$1.50 \times 10^{\$3} \approx \frac{[H^{+}]^{2}}{0.0265} \checkmark ('=' sign is acceptable)$	3
	0.0200	
	$[H^{+}] = \sqrt{1.50 \times 10^{\$3} \times 0.0265} = 6.30 \times 10^{-3} \text{ mol dm}^{-3} \checkmark$	
	$pH = -log[H^{+}] = -log 6.30 \times 10^{-3} = 2.20 \checkmark$	
	(Stand alone mark; ie pH –log(0.0265) = 1.58 can be awarded 1 mark)	-
	If all figures kept in calculator, value = 2.200331434	
	ACCEPT 2.2 up to calculator value	
	ACCEL 1 2.2 up to calculator value	
	If no square root, pH =. 4.40	
	11 110 3quaic 100t, pri =. 4.40	
3(b)(iii)	a small amount of second dissociation	1
0(2)()	OR it is a diprotic acid ✓	1
	ACCEPT equilibrium concentration H ₂ SO ₃ is less than the initial	
	concentration.	
3(c)(i)	ionic product (of water) ✓	1
0(0)(1)	lottio product (or water)	'
3(c)(ii)	$K_{\rm w} = [{\rm H}^{+}] [{\rm OH}^{-}] \checkmark$	1
-(-)()	- w [[]	
3(d)	1.0 × 10 ^{\$14}	2
()	$[H^{+}] = \frac{1.0 \times 10^{814}}{0.0265}$ OR 3.77 × 10 ⁻¹³ OR pOH -log(0.0265) = 1.58 \checkmark	
	pH = $-\log(3.77 \times 10^{-13})$ OR 14 - 1.58 = 12.42 \checkmark	
	prilog(3.77 ^ 10) OR 14 - 1.56 - 12.42 v	
	calculated value = 12.42324587	
2/0)	ACCEPT 12.4 up to calculator value	1
3(e)	C: KHSO ₃ V	4
	$KOH + H_2SO_8 \longrightarrow KHSO_3 + H_2O \checkmark$	
	D: K ₂ SO ₃	
	$2KOH + H2SO3 \longrightarrow K2SO3 + 2H2O /$	
	$KOH + KHSO_3 \longrightarrow K_2SO_3 + H_2O$	
	If C and D are the wrong way around award 3 max by ECF	
/_	If H₂SO₄ used throughout, award 3 max by ECF	
	Total	: 14

Stage 1: $CICH_2COOH + 2NaOH \longrightarrow HOCH_2COONa + NaCI + H_2O$ scores two marks $\checkmark\checkmark$ $CICH_2COOH + NaOH \longrightarrow HOCH_2COONa + HCI$ scores one mark \checkmark $CICH_2COOH + NaOH \longrightarrow CICH_2COONa + H_2O$ scores one mark \checkmark $CICH_2COOH + NaOH \longrightarrow HOCH_2COOH + NaCI$	Marks 1
CICH ₂ COOH + 2NaOH \longrightarrow HOCH ₂ COONa + NaCl + H ₂ O scores two marks \checkmark \checkmark CICH ₂ COOH + NaOH \longrightarrow HOCH ₂ COONa + HCl scores one mark \checkmark CICH ₂ COOH + NaOH \longrightarrow CICH ₂ COONa + H ₂ O scores one mark \checkmark CICH ₂ COOH + NaOH \longrightarrow HOCH ₂ COOH + NaCl	3
CICH ₂ COOH + 2NaOH \longrightarrow HOCH ₂ COONa + NaCl + H ₂ O scores two marks \checkmark \checkmark CICH ₂ COOH + NaOH \longrightarrow HOCH ₂ COONa + HCl scores one mark \checkmark CICH ₂ COOH + NaOH \longrightarrow CICH ₂ COONa + H ₂ O scores one mark \checkmark CICH ₂ COOH + NaOH \longrightarrow HOCH ₂ COOH + NaCl	3
scores two marks ✓✓ CICH₂COOH + NaOH → HOCH₂COONa + HCI scores one mark ✓ CICH₂COOH + NaOH → CICH₂COONa + H₂O scores one mark ✓ CICH₂COOH + NaOH → HOCH₂COOH + NaCI	
CICH₂COOH + NaOH → HOCH₂COONa + HCI scores one mark ✓ CICH₂COOH + NaOH → CICH₂COONa + H₂O scores one mark ✓ CICH₂COOH + NaOH → HOCH₂COOH + NaCI	
scores one mark \checkmark CICH ₂ COOH + NaOH \longrightarrow CICH ₂ COONa + H ₂ O scores one mark \checkmark CICH ₂ COOH + NaOH \longrightarrow HOCH ₂ COOH + NaCI	
scores one mark \checkmark CICH ₂ COOH + NaOH \longrightarrow CICH ₂ COONa + H ₂ O scores one mark \checkmark CICH ₂ COOH + NaOH \longrightarrow HOCH ₂ COOH + NaCI	
scores one mark ✓ CICH₂COOH + NaOH → HOCH₂COOH + NaCl	
scores one mark ✓ CICH₂COOH + NaOH → HOCH₂COOH + NaCl	
CICH ₂ COOH + NaOH → HOCH ₂ COOH + NaCl	
seores one mark ✓	
y	
Stage 2:	
$HOCH_2COONa + H^{+} \longrightarrow HOCH_2COOH + Na^{+} \checkmark$	
ACCEPT ECF from CICH ₂ COONa forming CICH ₂ COOH	
huffer minimises OR resists nH changes /	
buttor millimises OK resists pri chariges v	
HOCH-COOH - HOCH-COO- + H+ -/	2
110011200011 — 1100112000 TH V	
For explanation below, accept HA and A ⁻ OR other weak acid	
added alkali reacts with $H^+ / H^+ + OH^- \rightarrow H_2O \checkmark$	
→ HOCH ₂ COO ⁻ / Equil → right (to counteract change) ✓	
→ HOUH₂UUUH / Equil → left (to counteract change) ✓	4
$[H^{+}] = 10^{-pH} = 10^{-4.4} = 3.98 \times 10^{-5}$	
11 12 15 5.55 X 15	
[HOCH,COOH] [H ⁺]	
$\frac{1}{[HOCH_2COO^{\$}]} = \frac{1}{K_a}$	
OR $\frac{1}{10000000000000000000000000000000000$	
IHOCH COOHL 3.98 v 10 ⁵⁵	
$\frac{[HOCH COO^{\$}]}{[HOCH COO^{\$}]} = \frac{3.30 \times 10}{1.48 \times 10^{\$4}} OR 0.27$	
$\frac{[110011_{2}000]}{[110011_{2}000]} = \frac{1.48 \times 10^{3}}{2.09 \times 10^{3}} \text{ OR } 3.7 \checkmark$	3
[noon ₂ coon] 3.98 × 10	
OWC: Buffer explanation includes discussion of equilibrium shift	
wito. Duner explanation includes discussion of equilibrium shift	1
	HOCH ₂ COONa + H ⁺ \longrightarrow HOCH ₂ COOH + Na ⁺ \checkmark ACCEPT ECF from CICH ₂ COONa forming CICH ₂ COOH buffer minimises OR resists pH changes \checkmark HOCH ₂ COOH \rightleftharpoons HOCH ₂ COO ⁻ + H ⁺ \checkmark For explanation below, accept HA and A ⁻ OR other weak acid added alkali reacts with H ⁺ / H ⁺ + OH ⁻ \rightarrow H ₂ O \checkmark