Question	Expected answers	Marks
1 (a)	Correct oxidation states for each atom i.e. $Ca = +2$ $C = +4$ and	2
	O = -2 (1); Oxidation numbers do not change during the reaction / no	
	electron transfer during reaction (1)	
(b)	MgCO ₃ decomposition easier than CaCO ₂ / higher	3
	decomposition temperature with CaCO ₃ / ora (1);	3
	Mg ²⁺ higher charge density than Ca ²⁺ / both have the same	
	charge but Mg ²⁺ has a smaller ionic radius (1);	
	3 Mais James Torne Tadius (1),	
	2 N 2+	
	So Mg ²⁺ will polarise CO ₃ ²⁻ more than Ca ²⁺ can / more distortion	
(c)	of the $CO_3^{2^-}$ electron cloud by Mg^{2^+} (1)	
(-)	$\Delta H = +1207 + (-635) + (-393) / \text{ correct energy cycle drawn } / \Delta H_{\text{f}} \text{ product} - \Delta H_{\text{f}} \text{ reactants (1);}$	2
	Zing reactaints (1),	
_	$\Delta H = +179 \text{ (kJ moi}^{-1})(1)$	
(d)	$\Delta H = +179 \text{ (kJ moi}^{-1})(1)$ $Mg^{2^+} + O^{2^-} \rightarrow MgO (1);$	3
	(3916 kJ of) energy is released (1);	
	When one male of callid	
	when one mole of solid magnesium oxide is made from its constituent gaseous ions (1)	
(e) (i)	Enthalpy change of atomisation (of oxygen) (1)	
(ii)	Any two from	2
	Mg ⁺ has one more proton than electrons / same number of	2
	protons but one fewer electron (1);	
	Electron is lost from a particle that carries an overall positive	
	charge (rather than being neutral) (1);	
/iii\	So (outer) electron more firmly attracted to the nucleus (1)	
(iii)	Correct energy level diagram labelled with correct formulae /	4
	correct cycle labelled with correct formulae (1);	
	Any two from	
	Correct state symbols (1);	
	Correct energy values shown in the Born-Haber cycle (1)	
	Correct labels for the enthalpy changes (1)	
	And	
	Lattice enthalpy = $-735 + (-1445) + (-150) + (-878) + 141 + (-247)$	
	+ (-602) (1)	
(f)	Furnace lining / aw (1)	1
1		Total =
f.		18

Question		on	Expected answers	Marks	
2	(a)		Have variable oxidation states / aw (1);	2	
	(b)	/i)	(Elements or compounds are) often catalysts (1)		
	(p)	(i)	$Cu^{2+}(aq) + 2OH(aq) \rightarrow Cu(OH)_2(s) /$ $[Cu(H_2O)_6]_0^{2+}(aq) + 2OH(aq) \rightarrow Cu(OH)_2(s) + 6H_2O(l) /$	1	
			$[Cu(H_2O)_6]^{2^+}(aq) + 2OH^-(aq) \rightarrow Cu(OH)_2(H_2O)_4(s) + 2H_2O(l)$		
	(b)	(ii)	Colorimeter needs a clear solution / precipitate will interfere with the passage of light / precipitate may absorb light / colorimeter	<u>1</u>	
			has been set up to measure the concentration of just the complex ion (1)		
	(c)		Points plotted correctly (1); Two straight lines of best fit that intersect (1)	2	
	(d)	(i)	0.0025 (1)	1	
		(ii)	10 (cm ³)	1	
		(iii)	Answer to part (ii) x 10 ⁻³ / 0.010 (1)	1	
		(iv)	x = 4 and $y = 2(1)$	1	
	(e)	(i)	Has a lone pair / it is an electron pair donor (1)	1	
		(ii)	Lone pair in the ammonia ligand is more like a bond (pair) / ammonia ligand has four bond (pairs) (1); So equal repulsion between all four electron pairs or bonds with the ligand / extra repulsion due to presence of lone-pair in ammonia / aw (1)	2	
	(f)	(i)	$[Cu(H_2O)_6]^{2^+}$ + $4Cl^-$ → $[CuCl_4]^{2^-}$ + $6H_2O$ / $[Cu(H_2O)_6]^{2^+}$ + $4HCl$ → $[CuCl_4]^{2^-}$ + $6H_2O$ + $4H^+$ / Cu^{2^+} + $4HCl$ → $CuCl_4^{2^-}$ + $4H^+$	1	
		(ii)	Tetrahedral shape with either wedges or correct bond angles / square planar shape (1)	1	
				Total = 15	

1 (a) Diagram to show $\text{Cu in Cu}^{2+} \text{ (1)}$ 1 mol dm $^{-3}$ solution for Cu $^{2+}$ (1) 298K (1) salt bridge (1) $\text{named reference electrode, if hydrogen used, must show H}^{+} \text{ and H}_{2} \text{ (1)}$

measure voltage, diagram must show complete circuit including voltmeter (1) comment on how SEP relates to voltage measured/ SEP of hydrogen is 0 (1) [6max]

(b) $1s^22s^22p^63s^23p^63d^{10}4s^1$ / $1s^22s^22p^63s^23p^64s^13d^{10}$ (1) $1s^22s^22p^63s^23p^63d^{10}$ (1) $1s^22s^22p^63s^23p^63d^9$ (1) [3]

(c) Cu²+ coloured because

has vacant d-orbital (1)

(colour due to) electron promotion/ excitation (1)

energy is absorbed (1)

in visible part of spectrum (1)

(1)

colour seen is complementary or described (1)

Cu⁺ not coloured because has a **full** d-subshell (1) [5max]

QWC: correct use of two of the terms electron promotion/excitation, d-orbital, complementary colour(1) [1]

[Total: 15]

June 2003

2	(a)(i)	(+)3/3+/III (1)	[1]
	(ii)	3D sketch to show	
		tetrahedral (1)	
		square planar (1)	[2]
	(iii)	purple (1)	
		green absorbed/ blue and red reflected (1)	[2]
2	(b)(i)	has a lone/unbonded pair (1)	
		that it donates to a metal (ion)/ that it donates to a central ion/ that it use form a dative covalent bond with a metal (1)	s to [2]
	(ii)	ligand that can donate two lone pairs/ that can form two bonds (1)	[1]
	(c)(i)	mirror image drawn (1)	[1]
	(ii)	optical (1)	
		non-superimposable mirror images/ cannot be superimposed (1)	[2]
		[Total:	11]

3

(a)	SEP used to explain feasibility eg more negative releases electrons/ use of SEP to explain which equation is reversed and then added/ cell potential is + 0.37(V) (1)	[1]
(b)	involves both oxidation and reduction (1)	
	of the same species / use of Cu ⁺ or named example (1)	[2]
(c)	making into solids/ insoluble compounds/ forming complexes NOT name compound (1)	d [1]
(d)(i)	formula Cul/ Cu ₂ l ₂ (1)	
	equation complete and balanced (1)	[2]
(ii)	blue (solution) at start (1)	
	white solid is Cul/ copper iodide (1)	
	iodine is brown (1)	[3]
(e)	any sensible use of copper as metal and a valid reason for its use in this	case
	examples include: electrical wiring because it conducts electricity/is ductile pans because it conducts heat water pipes because it does not corrode/is not poisonous/ can be bent NOT conducts heat decorative purposes because it does not corrode/ because it corrodes to attractive colour (1)	[1]

[Total: 10]

4 (a)(i) 2×10^{-3} (1)

[1]

(ii) 6×10^{-3} (1)

[1]

(iii) 3 ecf possible from (i) and (ii)

- [1]
- (iv) $1 \times 3 \times 2 = 3 \times \text{ change in oxidation state of manganese/ evidence of calculation (1)}$

final oxidation state of manganese = +4 (1) ecf possible

answer alone = 1

[2]

(b) not oxidation/reduction/redox/ statement is not valid BUT must have attempt at explanation (1)

yellow is CrO₄²⁻/ chromate (1)

equilibrium is $Cr_2O_7^{2-} + H_2O \rightleftharpoons 2CrO_4^{2-} + 2 H^+ / other correctly balanced equations(1)$

chromate is in oxidation state 6 (1)

comment on movement of equilibrium with change in pH (1)

[4max]

[Total: 9]

(a) (i) Br⁻(aq) 1st order ✓
 [Br⁻(aq)] triples rate triples ✓

[2]

$$H^{+}(aq)$$
 2nd order \checkmark $[H^{+}(aq)]$ doubles rate quadruples \checkmark

[2]

[2]

(ii) rate =
$$k[Br^{-}(aq)][H^{+}(aq)]^{2}[BrO_{3}^{-}(aq)] \checkmark$$
 (state symbols **not** needed)

[1]

(iii)

$$k = \frac{\text{rate}}{[\text{Br}^{-}(\text{aq})][\text{H}^{+}(\text{aq})]^{2}[\text{BrO}_{3}^{-}(\text{aq})]} = \frac{1.2 \times 10^{-3}}{0.1 \times 0.1^{2} \times 0.1} \checkmark =$$

rate constant, $k:=12 \checkmark$ units: dm⁹ mol⁻³ s⁻¹ \checkmark (0.0833 would score 1 mark)

[3]

[1]

(ii) rate equation shows reaction is 1st order wrt HBr and 1st order wrt O₂ ✓which corresponds to molecules in step 1 ✓

(iii) 4HBr +
$$O_2 \longrightarrow 2Br_2 + 2H_2O \checkmark$$

[1]

[2]

[Total: 14]

(a) decrease temperature ✓ exothermic direction ✓ 2. increase pressure ✓ favours side with fewer molecules ✓

[4]

(b) (i) The contribution of a gas to the pressure in a gas mixture / mole fraction x total pressure ✓

[1]

(ii)

$$K_p = \frac{p \operatorname{COCl_2(g)}}{p \operatorname{CO(g)} \times p \operatorname{Cl_2(g)}} \checkmark \checkmark$$

If any [] then only ✓ for K_o expression

If upside down with **no** concentration terms [], ✓ only

$$K_p = \frac{4.13 \times 10^{-5}}{2.5 \times 10^{-6} \times 2.5 \times 10^{-6}} = 6.6 \times 10^6 \checkmark Pa^{-1}$$

If expression is upside down, then answer consequentially is 1.51×10^{-7} .

[3]

(c) (i)

C=O dipole \checkmark ; δ - on chlorines \checkmark

C=O dipole shown correctly on one structure without any contradiction scores 1 mark

[2]

(ii) A has 2 δ- / A has 2 electronegative atoms / A has more electronegative elements than B <

COCl₂ is symmetrical / A is not symmetrical ✓

dipoles cancel in COCl₂ ✓

3 marking points gives [2] max

(iii)
$$COCl_2 + 2H_2O \longrightarrow H_2CO_3 + 2HCI \checkmark \checkmark$$

OR

 $COCl_2 + H_2O \longrightarrow CO_2 + 2HCI \checkmark \checkmark$

OR

 $COCl_2 + H_2O \longrightarrow O=COHCI + HCI \checkmark$

[2]

[Total: 14]

3. (a) (i) $H_2 + Cl_2 \longrightarrow 2HCl \checkmark$

[1]

(ii) $C_6H_{14} + Cl_2 \longrightarrow C_6H_{13}Cl + HCl \checkmark$

[1]

(b) (i) moles HCl = $8 \times 15 = 120 \text{ mol } \checkmark$ volume HCl(g) = $120 \times 24 = 2880 \text{ (dm}^3) \checkmark$

[2]

(ii) solution must be diluted by 8.00/0.0200 = 400 times ✓
To 2.50 cm³ of 8.00 mol dm⁻³ HCl✓ add sufficient water to make 1 dm³ of solution.

[2]

(iii) pH= $-\log[H^{+}] \checkmark = 1.70 \checkmark$

[2]

(c) (i) Final pH is approx 11 / equivalence point <7 ✓

[1]

(ii) volume of NH₃(aq) that reacts is 15 cm³ \checkmark amount of HCl used = 0.0200 x 20.00/1000 = 4 x 10⁻⁴ concentration of NH₃(aq) = 4 x 10⁻⁴ x 1000/15 = 0.0267 mol dm⁻³ \checkmark

[2]

(iii) chlorophenol red ✓
pH range coincides with pH change during sharp rise OR pH 4-7 /
coincides with equivalence point ✓

[2]

[Total: 13]

4. (a) A solution that minimises changes in pH (after addition of acid/alkali) ✓

equilibrium: HCOOH ⇒ HCOO⁻ + H⁺

/ HCOOH and HCOO⁻/ weak acid and its conjugate base ✓

HCOOH reacts with added alkali / HCOOH + OH⁻ → H₂O + COO⁻/

added alkali reacts with $H^+ / H^+ + OH^- \longrightarrow H_2O\checkmark$

→ HCOO⁻ / Equilibrium moves to right (to counteract change) ✓

HCOO⁻ reacts with added acid or H⁺ ✓

→ HCOOH / Equilibrium moves to left (to counteract change) ✓

[6]

qwc: communicates in terms of relevant equilibrium ✓ [1]

(b) For a buffer, $K_a = [H^+] \times [HCOO^-]/[HCOOH] \checkmark$

$$[H^{+}] = K_a \times [HCOOH]/[HCOO^{-}] = 1.6 \times 10^{-4} \times 1/2.5 = 6.4 \times 10^{-5} \text{ mol dm}^{-3} \checkmark$$

$$pH = -log[H^{+}] = -log(6.4 \times 10^{-5}) = 4.19 / 4.2 \checkmark$$

OR

$$pH = pK_a - log [HCOOH]/[HCOO^-] \checkmark$$

$$pK_a = 3.8 \checkmark$$

$$pH = 3.8 + 0.4 = 4.2 \checkmark$$

NOTES

3.19 worth ✓✓ (incorrect power of 10)

3.4 worth ✓✓ (use of [HCOOH]/[HCOO⁻])

[3]

[Total: 10]