Ougation	Expended	B.61 -	A -1 -1141 1
Question	Expected answers	Marks	Additional guidance
2 (a)	Octahedral shape with some indication of three	2	Allow use of
	dimensions (1);		wedges and
			dotted lines to
	Bond angle 90° (1)	}	indicate three
			dimensions
			Allow three
	$\begin{bmatrix} H_2O \\ H_2O \\ H_2O \end{bmatrix} OH_2$ $H_2O OH_2$		dimensions if at
	Fe		least two bond
			angles of 90° are
	$ H_2O^{\circ} VOH_2 $		shown that clearly
	L H ₂ O J		demonstrate 3D
			If two different
			bond angles do
			not award bond
/b)	Long pair on overgon / glootron pair on overgon (4):	2	angle mark Allow water is an
(b)	Lone pair on oxygen / electron pair on oxygen (1); Donated to the (central) metal (ion) (1)	2	
,			electron pair donor
	Or		Allow metal (ion)
	G.		is an electron pair
	A dative bond exists between water and the central		acceptor
	metal (ion) (1) and if electron pair comes from oxygen		Allow marks from
	(1)		a diagram
(c) (i)	All Points plotted correctly (1);	2	Allow to nearest
	Two straight lines of best fit that intersect (1)		half small square
(ii)	13.0 - 13.6 (1)	1	Unit not needed
			Allow eef from
			incorrect graph
(iii)	Answer to part (ii) $\times 10^{-3} \times 0.0500$ (1)	1	Allow ecf
(iv)	20 – Answer to part (ii)	1	
(v)	Answer to part (iv) × 10 ⁻³ × 0.100 (1)	1	Allow ecf
(vi)	x = 1 and $y = 5(1)$	1	Allow ecf of x and
			y that add up to 6
(d) (i)	Moles of K = 0.014, Fe = 0.0035, C = 0.021 and N =	2	Ignore order of
	0.021 / molar ratio is K:Fe:C:N is 14:3.5:21:21 (1);		atoms in the
/ii\	K_4 Fe(CN) ₆ / K_4 FeC ₆ N ₆ (1) [Fe(CN) ₆] ⁴⁻ (1)		formula
(ii)		1	Allow Fe(CN) ₆ ⁴⁻ / FeC ₆ N ₆ ⁴⁻
		Total	1 GOGING
		= 14	

Question		Expected answers		Additional guidance
3	(a)	Silver (1)	1	
	(b)	0.0071 (g) (1)	1	
	(c) (i)	Ag + CuCl ₂ → AgCl + CuCl(1)	1	
	(ii)	Oxidation because oxidation state of silver changes from 0 to +1 (1); Reduction because oxidation state of copper changes from +2 to +1 (1)	2	Allow ecf from wrong equation
	(d) (i)	(1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁹ (1)	1	
	(ii)	Copper(II) ions have an incomplete set of 3d electrons / partially filled d (sub) shell / partially filled d orbital (1)	1	
			Total = 7	

Question	Expected answers	Marks	Additional guidance
	Definition – maximum of two marks The enthalpy change that accompanies the formation of one mole of a solid (compound) (1); from its constituent gaseous ions (1)	12	Definition maximum of marks Factors maximum of marks Decomposit maximum of marks – mar can either co from the polarisation explanation of lattice enthal explanation of not both Allow marks an equation Allow energy released / en change Not energy required Allow ionic compound / s
	Factors – maximum of four marks As ionic charge increases it becomes more exothermic / ora(1); Since there will be a stronger (electrostatic) attraction between the (positive and negative) ions / ora (1); As ionic radius decreases becomes more exothermic / ora (1); Since the ions become closer together / ora (1); so the (positive and negative) ions are more strongly attracted to one another / aw (1)		Allow lattice enthalpy becolarger if it is clarger if it is clarger if the definition that lattice enthalpy is exothermic / clarger

Final Mark Scheme

Question	Expected Answers	Marks
1(a)	From orange to green (accept green/blue but not blue)	2
(b) (i)	Diagram to show Salt bridge Voltmeter Solution containing both $\text{Cr}_2\text{O}_7^{2-}$ and Cr^{3+} Platinum electrode	1 1 1
(ii)	Pressure 101 kPa/1 Atm/100kPa Temperature 298K/25 ⁰ C Concentration of each solution 1 mol.dm ⁻³	1 1 1 1
(c)	3H₂ + Cr₂O ₇ ²- + 8H⁺ → 2Cr³+ + 7H₂O Correct species both sides Balancing (do not allow if electrons or H⁺ not cancelled)	1
(d)	Equilibrium involving Cr ₂ O ₇ ²⁻ moves to RHS Therefore SEP more positive or Cr ₂ O ₇ ²⁻ gains electrons more readily / is more easily reduced / becomes a better oxidising agent	1
		Total:13

Question	Expected Ans			Marks
3 (a)	Formula	Co-ordination number	O.S.	
	[Ni(H ₂ O) ₆] ²⁺	6	+2	2
	CuCl ₂ ⁻	2	+1	2
(b)	arrangement Cis – trans: Suitable ligar 2 diagrams correctly labe Optical: Non-superim Rotate (plane Need for corr arranged tetr 2 diagrams	isomerism involve fixed goin space/both are stereoised with correct formulae elled cis and trans posable mirror images e) polarised light rect formula bidentate ligare ahedrally / any other asymptes on all formulae	nd / 4 different ligands	1 1 2 1 1 1 1 1 1 2 1 1
	must contain following list: Stereoisomer bidentate, lig	sponse must be well organ a minimum of 3 technical rism, non-superimposable and, plane polarised, asyr octahedral, square plana	terms from the , mirror images, nmetric, chiral,	Max 9 for (b) 1 Total: 14
				Т

Question	Expected Answers	Marks
4 (a)	A redox reaction involves oxidation and reduction Chooses: 2Cu ⁺ → Cu ²⁺ + Cu Identify species oxidised and reduced by use of oxidation numbers or electron transfer	1 1 1
(b)	Chooses: CoCl₄²⁻ + 6NH₃ → [Co(NH₃)₆]²⁻ + 4Cl⁻ Replacement of existing ligand By a stronger ligand / a different ligand present in higher concentration	1 1 1
	Allow <u>stepwise</u> replacement of one ligand by another for 2 marks	Total: 6

Question	Expected Answers	Marks
1 (a) (i)	rate at start (of reaction)/ t=0 ✓	[1]
(ii)	0.048 (mol dm ⁻³ s ⁻¹) ✓	[1]
(b) (i)	C ₁₂ H ₂₂ O ₁₁ (aq):	
	Exp 2 has twice $[C_{12}H_{22}O_{11}$ (aq)] as Exp 1 and rate x 2 \checkmark , so order = 1 with respect to $C_{12}H_{22}O_{11}\checkmark$	
	HCl(aq): Exp 3 has 1.5 x [HCl] as Exp 1 and rate increases by 1.5 ✓, so order = 1 with respect to HCl(aq) ✓	
	ORDER HAS TO BE CORRECT TO GET REASON MARK	[4]
(ii)	2/second order ✓ This will be dependent on answer to (i)	[1]
(iii)	rate = k[C ₁₂ H ₂₂ O ₁₁] [HCl] ✓✓ OR	
	rate = 2.4 [C ₁₂ H ₂₂ O ₁₁] [HCl] ✓✓	[2]
	rate = k [C ₁₂ H ₂₂ O ₁₁] [H ₂ O] scores 1 mark) rate = [C ₁₂ H ₂₂ O ₁₁] [HCl] scores 1 mark) k [C ₁₂ H ₂₂ O ₁₁] [HCl] scores 1 mark) k = [C ₁₂ H ₂₂ O ₁₁] [HCl] scores zero	
	$K = [O_{12} \cap O_{22} O_{11}] [\cap O_{1}] $ Scores zero $Check for ecf from (i)$	
(c)	increases ✓	[1]
(d) (i)	time for concentration (of a reactant) to fall to half the original value ✓	[1]
(ii)	$C_{12}H_{22}O_{11}$: 0.05 mol dm ⁻³ \checkmark In one half life, [$C_{12}H_{22}O_{11}$], concentration halves 0.1/2 \checkmark	
	HCl: 0.1 mol dm ⁻³ ✓	
	Assume mol dm ⁻³ unless told otherwise	ror
	Assume 'mol dm³ means mol dm⁻³ but Penalise wrong unit once only	[3]
	Felialise Wilding unit office only	Total: 14

Que	Question		Expected Answers	Marks
2	(a)	(i)	$K_c = \frac{[NO]^2}{[N_2][O_2]} \checkmark \checkmark$ award 1 mark if upside down K_p expression worth 1 mark	[2]
		(ii) (iii)	Equil \longrightarrow left because K_c is very small $[O_2(g)] = \frac{[NO]^2}{[N_2] \times K_c} = \frac{(4.0 \times 10^{-16})^2}{1.1 \times 4.8 \times 10^{-31}} \checkmark$	[1]
			= 0.30 mol dm ⁻³ ✓ (calculator: 0.303030303) answer given to 2 sig figs ✓ 3.3 ✓ ✓ (upside down) calc: 3.3 7.6 x 10 ¹⁴ ✓ ✓ (missing out ²) calc: 7.5757 0.37 ✓ ✓ (1.1 on top) calc: 0.366666 5.2 x 10 ⁻⁴⁶ ✓ ✓ ('4' values swapped) calc: 5.236363. x 10 ⁻⁴⁶	
	(b)	(i)	∆H is +ve ✓	[3]
	(5)	(ii)	equilibrium moves to the right to compensate for increase in temperature/to lower the temperature / to minimise the change ✓	
			increase in proportion of NO ✓ because K _c increases	
			Can be linked to either increased proportion of NO or enthalpy change ✓	[4]
		(iii)	2NO + O ₂ → 2NO ₂ ✓ ✓ species correct for 1st mark 'simplest' balanced equation for 2nd mark NO + ¹/₂O₂ → NO₂ also gets both marks N₂O₄ is fine NO₂ for 1st mark	[2]

	OR so that a greater proportion of molecules exceed activation energy ✓ 10 atm used to increase rate by increasing concentration OR	
	10 atm used to increase rate by increasing concentration <i>OR</i> increasing collisons ✓	
·	Catalyst used to increase rate by lowering the activation energy/providing a lower energy route ✓ NOT increase equilibrium yield	[7]
	Quality of written communication: Recognition of a compromise between rate and equilibrium amount ✓	[1]
		Total: 20

Question		Expected Answers	Marks
3 (a)	(i)	pH = -log[H⁺(aq)] ✓ state symbols not needed	[1]
	(ii) (iii)	HBr is stronger than CH₃COOH because pH is lower ✓ HBr dissociates more/more H⁺ ions for the same concentration ✓	[2]
	()	diluting by a factor of 10/ 10-fold dilution ✓	[2]
		pH = 3 ✓	
		Credit a calculated pH for ecf from a wrong dilution with working shown	
(b)	(i)	K _w = [H ⁺ (aq)] [OH ⁻ (aq)] ✓ state symbols not needed	[1]
	(ii)	$[H^{+}(aq) = \frac{K_{w}}{[OH^{-}(aq)]} = \frac{1.0 \times 10^{-14}}{0.0200} = 5 \times 10^{-13} \text{mol dm}^{-3} \checkmark$	
		pH = -log (5 x 10 ⁻¹³) = 12.30 ✓ (accept calc value: 12.30103) ecf is possible for pH mark providing that the [H ⁺] value has been derived from K _w /[OH] If pOH method is used, pOH = 1.7 would get 1st mark, pH = 14 - 1.7 = 12.3 gets 2nd mark.	[2]
(c)	(i)	start at pH=3.4 (approx half way up 0-7 rise) ✓ sharp rise at 20 cm³ (must have a vertical part) ✓ finish higher above pH 7 than starting pHwith line continued to 50 cm³but finish pH is less than 14 ✓ NOTE that lines should not loop	[3]
	(ii)	Indicator that has a pH range coinciding with steepest part of titration curve in (i). Likely to be thymol blue OR brilliant yellow✓	
		pH range coincides withpH change during sharp rise /equivalence point ✓	[2]
			Total: 13

Question	Expected Answers	Marks
4 (a)	P: O = 43.7/31 : 56.3/16 / 1.41 : 3.52 \checkmark Ratio P:O = 2 : 5 / Empirical formula = P_2O_5 \checkmark	
	Molecular formula = P_4O_{10} (from M_r value) \checkmark $Ca_3(PO_4)_2 \checkmark$	[3]
	Equations: $P_4 + 5O_2 \longrightarrow P_4O_{10} \checkmark$ (or $P_4 + 5O_2 \longrightarrow 2P_2O_5$)	[1]
	$\begin{array}{cccc} P_4O_{10} + 6H_2O & \longrightarrow & 4H_3PO_4 \checkmark \\ (\text{or } P_2O_5 + 3H_2O & \longrightarrow & 2H_3PO_4 \end{array}) \end{array}$	
	Ca ₃ (PO ₄) ₂ + 3H ₂ SO ₄ \longrightarrow 2H ₃ PO ₄ + 3CaSO ₄ \checkmark A candidate who writes an equation forming P ₄ O ₆ or P ₂ O ₃ can	[3]
(b) (i)	score the equation mark for oxidation of P₄. H₃PO₄ > H₂PO₄⁻ > HPO₄²⁻ Increased strengths with increasing K₂ values√	[1]
(ii)	Molar mass of Na₂HPO₄ = 142 g mol ⁻¹ ✓	
	amount of Na₂HPO₄ = 4.26/142 = 0.03 mol ✓ e.c.f. mass/molar mass	
	volume of H ₃ PO ₄ needed = 0.03 x 1000 / 0.5 = 60 cm ³ ✓ e.c.f. moles Na ₂ HPO ₄ x 1000/0.5	
	amount of NaOH = 2 x 0.03 = 0.06 mol ✓ e.c.f. 2 x moles Na₂HPO₄	
	volume of NaOH needed = 0.06 x 1000 / 0.5 = 120 cm³ ✓ e.c.f. moles NaOH x 1000/0.5	[5]
	Penalise units once.	
		Total: 13