Mark Scheme Page 3 of 6 Abbreviations, annotations and conventions	; = separate: NOT = answers () = words wh	s marking points which are not worthy iich are not essential	to gain credit	ing point	Version Final Post- andardisation
used in the Mark Scheme	ecf = error carr AW = alternativ ora = or revers	ied forward e wording	n <u>must</u> be used to gain cr	eart	
Question		Expected answer	'S	Marks	Additional guidance
2 (a) (i)	CaCO ₃ → CaC	O + CO ₂ (1)		1	Ignore state symbols
(ii)	Ca ²⁺ has a smalle So calcium ion pol	rionic radius than l arises the carbona	sity than barium ion / Ba ²⁺ / ora (1); ite (ion) more than CO ₃ ²⁻ more than Ba ²⁺	2	Particles referred to must be correct Not Ca has a higher charge density Not calcium has a higher charge density Allow calcium has a smaller ionic radius Allow correct description of more polarisation Allow CO ₃ - Not Ca ²⁺ polarises CO ₃
(b) (i)	Oxidation state of Oxidation state of Oxidation state of Correct linking of creduction and with	oxygen goes from	-2 to 0 (1);	3	If oxidation state of barium given is incorrect max 1 for the oxidation numbers. Allow ecf from wrong oxidation states for the correct linking mark Both oxidation
					and reduction needed
(ii)	Correct use of mol Correct cycle (1); (+)1000 (kJ mol ⁻¹)	, , ,		3	Award full marks for (+) 1000 (kJ mol ⁻¹) Only allow ecf for final lattice energy answer from a correct cycle Allow -1000 (1), + 467 (2), +901 (2), +1558 (2),

Mark Scheme Page 4 of 6 Abbreviations, annotations and conventions used in the Mark Scheme	; = separate: NOT = answers () = words wh	s marking points which are not worthy iich are not essential ing) key words which ied forward e wording				
Question		Expected answer	8	Marks	Additional guidance	
2 (c) (i)	Moles of gas made	e = 0.005 or 0.0050 e = 0.0125 / 0.0126 300 cm ³ to 302 cm ²	S (1);	3	Allow ecf within question Ignore significant figures	
(ii)	gas will be produc	nperature may be f ed / to fill a gas syr as syringe too sma	too high / too much inge need a smaller all (1)	1	Allow NO ₂ is toxic / barium compounds are toxic Answer is consequential on answer to (i)	
(d) (i)	released when one is made from its g			2	Not energy required Allow marks via an equation Allow ionic compound / crystals instead of solid	
(ii)	radius / ora (1);		nsity / smaller (ionic) oxide (ion) / ora (1)	2 Total	Allow calcium oxide has stronger ionic bond / ora	
				Total = 17		

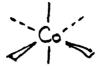
Mark Scheme Page 5 of 6	Unit Code 2815/01	Session June	Year 2005		Version Final Post- andardisation
Abbreviations, annotations and conventions used in the Mark Scheme	; = separates NOT = answers () = words wh	s marking points which are not worthy lich are not essential ng) key words which lied forward e wording			
Question		Expected answe	rs	Marks	Additional guidance
3	incomplete set of 3 filled 3d orbital (1) Complex ion Example of a copple CuCl ₄ ²⁻ (1); Diagram of the copdimensions e.g. us	3p ⁶ 3d ⁹ (1); ts have one oxidations of electrons / have per complex ion e.go oper complex show se of wedges or dote to match the com	ing three	11	Allow has at least one half-filled d orbital / partially filled 3d sub-shell least omplex that does not exist is used then first three marks not available lf a correct iron complex is given then example mark cannot be awarded Allow square planar where appropriate
	Dative bond exists (1) Properties	n electron pair acce between ligand an	d the copper(II) ion		Electron pair donor, electron pair acceptor and dative bond marks can awarded from an appropriate diagram
	Several oxidation s iron has +2 and +3		as +1 and +2 or		Ignore copper has a +3 Ignore iron has a +6 oxidation state

Forms coloured compounds e.g. copper(II) chloride is green or iron(II) sulphate is pale green (1); Element or compound has catalytic properties e.g. Iron

is a catalyst in the Haber process (1)

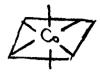
Mark Scheme Page 6 of 6 Abbreviations, annotations and conventions used in the Mark Scheme	; = separate: NOT = answers () = words wh	s marking points which are not worth nich are not essentia ng) key words which ied forward e wording		Starking point	Version Final Post- andardisation
Question	† · · · · · · · · · · · · · · · · · · ·	Expected answ	ers	Marks	Additional guidance
3	Quality of writter Use of technical te following list are une ligand addive bone coordinate tetrahedra square plate octahedral oxidation (catalyst electron part orbital sub-shell (catalyst)	erms – at least thre sed in the correct d bond l nar state)	ee terms from the	Total	Put a ring around the technical terms
				= 12	

Question	Expected Answers	Marks
1 (a)	Emf of a cell / voltage / potential difference / cell potential Comprising half cell combined with standard hydrogen electrode Conc = 1 mol.dm ⁻³ ; Pressure (of H ₂) = 1 atm; Temp = 298K (all of above=1mark)	1 1
(b)	+0.16 V (unit required)	1
(c) (i)	2MnO ₄ ⁻ + 10Cl ⁻ + 16H ⁺ → 2Mn ²⁺ + 5Cl ₂ +8H ₂ O correct species on both sides of equation equation balanced (ignore electrons for first mark, penalise for balance)	1
(ii)	Chlorine -1 → 0 Manganese +7 → +2 Link to c(i) and allow ecf	1
(iii)	Chloride ion oxidised (not chlorine) Manganate(VII) ion reduced (not manganese)	1
(d)	0.16 V too small/rate too slow/insufficient activation energy/not standard conditions	1
(e)	Peak between 500-550 nm	1
		Total: 12


Ques	tion		Expected Answers	Marks
2	(a)	(i)	Zinc	1
		(ii)	Coins + resist corrosion (not rusting) / hard wearing Or statues + resist corrosion/ attractive patina Or electrical connections + good conductor Or musical instruments + attractive / sonorous Or plumbing fixtures + hard / corrosion resistant	1
	(b)	(i)	Sodium carbonate/sodium hydroxide/other suitable named alkali (accept correct formulae) Do not accept 'alkali' on its own	1
		(ii)	Starch	1
		(iii)	Just before the end point/when solution turns pale straw	1
	(c)	(i)	0.002 mol	1
		(ii)	One (1)	1
		(iii)	0.002 mol	1
		(iv)	0.002 mols Cu ²⁺ contains 0.002 x 63.5 g of Cu =0.127 g 250 cm ³ of solution contains10 x 0.127 g = 1.27 g % Cu = 1.27/1.65 x 100 = 77.0% (Allow 76.9-77.0; allow ecf)	1 1 1 Total: 11

Question	Expected Answers	Marks
3 (a)	Number of coordinate / dative covalent bonds attached to metal ion / number of lone pairs accepted (not number of ligands)	1
(b) (i)	$[Co(H_2O)_6]^{2+}$ is octahedral; $[CoCl_4]^{2-}$ is tetrahedral Drawings must be 3 dimensional	2
	(See additional sheet for acceptable 3-d diagrams)	
(ii)	Pink → blue	2
(iii)	Add water. (Allow other suitable suggestions, e.g. add lead nitrate to precipitate Cl ⁻ as PbCl ₂)	1
(c)	[Co(NH ₃) ₆] ²⁺ E ^e for forward reaction is least positive Reverse reaction (oxidation) more likely to occur	1 1 1
(d)	Ammonia is a stronger ligand than water / ammonia forms stronger bonds / ammonia is a stronger base / ammonia can donate its lone pair more easily	1
		Total: 10

2815/06 Transition Elements June 2005 - Additional Sheet.


Question 3

(b) (i) Acceptable shapes for [Co(H₂O)₆]²⁺ include:

Acceptable shapes for [CoCl4]2- include:

Question 4

(b) Any examples which show the principle of cis/trans isomerism and optical isomerism are fine but, all diagrams must be 3-d. The shapes, shown in Q3 are allowed for octahedral or tetrahedral. For square planar complexes used to illustrate cis/trans isomerism the following illustrations are fine. For optical isomerism, there must be a mirror line and the isomers must be non-superimposable object/mirror images.

Question	Expected Answers	Marks
4 (a) (i)	<u>Cis</u> platin	1
(ii)	Binds to DNA Prevents cell from replicating / cells die	1
(b)	(Cis/trans) + Examples (must be 3-d drawings) Correctly labelled as cis and trans (allow this mark if	2
	diagrams are planar) Cis has same atoms at 90° + Trans has same atoms at 180° (need reference to bond angles for mark) (Optical) + examples (must be 3-d drawings) Rotate plane polarised light (by same number of degrees) in opposite directions Non-superimposable mirror images NB If use H ₃ N CH ₂ CH ₂ NH ₃ penalise only once (see additional sheet for acceptable 3-d diagrams)	1 1 2 1 1
	QWC – to be awarded for the correct use of scientific terms, to include at least 3 of the following: Cis & trans, optical, plane, polarised, non-superimposable, mirror images, geometric, bidentate, ligand, octahedral, square planar, tetrahedral	1
		Total: 12

Abbreviations, annotations and conventions used in the Mark Scheme ()	 words which are not essential to gain credit (underlining) key words which <u>must</u> be used to gain credit error carried forward alternative wording
---	--

Question Expected Answers			Expected Answers	Marks
1	(a)	(i)	constant half-life ✓	[1]
		(ii)	rate = k [N₂O₅] ✓	[1]
			Common error will be to use '2' from equation.	
•		(iii)	curve downwards getting less steep ✓ curve goes through 1200,0.30; 2400,0.15; 3600,0.075 ✓	[2]
		(iv)	tangent shown on graph at t = 1200 s	[1]
		(v)	$3.7(2) \times 10^{-4} \checkmark \text{ mol dm}^{-3} \text{ s}^{-1} \checkmark$ ecf possible from (ii) using $[N_2O_5]^{\times}$ (2nd order answer: $2.2(3) \times 10^{-4}$)	[2]
	(b)	(i)	slow step √	[1]
		(ii)	$(CH_3)_2C=CH_2 + H_2O \longrightarrow (CH_3)_3COH \checkmark$	[1]
		(iii)	H⁺ is a catalyst ✓	
			H ⁺ used in first step and formed in second step/ regenerated/ not used up ✓	[2]
		(iv)	rate = $k [(CH_3)_2C=CH_2] [H^{\dagger}] \checkmark$ common error will be use of H_2O instead of H^{\dagger}	[1]
				Total: 12
l				1

<u> </u>		
Abbreviations,	/ = alternative and acceptable answers for the same marking p	point
annotations and	; = separates marking points	
conventions	NOT = answers which are not worthy of credit	v:
used in the Mark	() = words which are not essential to gain credit	
Scheme	= (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward	
	AW = alternative wording	
	ora = or reverse argument	
Question	Expected Answers	Marks
2 (a)	High Pressure	Marko
. (a)	Equilibrium — right as fewer moles on right hand side and the shift reduces number of molecules/compensates for increasing pressure 🗸	
	Rate increases/ more collisions √	[2]
	High temperature Equilibrium → left as equilibrium goes to the left to compensate for increased temperature/absorbs the energy/in endothermic direction (ora) ✓	
	Rate increases/ more successful collisions 🗸	[2]
	Other effect High pressures expensive/ high temperatures expensive /high pressures cause safety problems	[1]
QoWC:	One correct statement followed by correct explanation 🗸	[1]
(b) (i)	CO H2 CH3OH	
	1.0 2.0 0.0 0.9 1.8 ✓ 0.1 ✓ 0.9/2.8 or 0.321 or 0.32/0.3 1.8/2.8 or 0.643 or	
	0.64/0.6 0.1/2.8 or 0.036 or 0.04 3.21 (MPa) 6.43 (MPa) 0.36 (MPa)	[4]
	In 3rd and 4th pows, ecf from previous row $K_p = \frac{p(CH_3OH)}{p(CO) \times p(H_2)^2} \checkmark \checkmark$	
(ii)	$p(CO) \times p(H_2)^2$ 1 mark for K_c use of any [] /inverted/power missing.	[2]
	K _p stays the same ✓	
(iii)	Equilibrium position moves to the right/yield increases vin response to increase in reactants v	
	$K_p = \frac{0.261}{3.70 \times 5.10^2} = 2.71 \times 10^{-3} \checkmark \text{MPa}^{-2} \checkmark$	[3]
(iv)	calc value 2.7120546 \times 10 ⁻³ ; answer and/or units ecf from (ii)	[2]
(c)	$CH_3OH + 1.5O_2 \longrightarrow CO_2 + 2H_2O \checkmark$	[1]
		Total: 18
		/

Expected Answers Marks	Abbreviations, annotations and conventions used in the Mark Scheme	point	
(ii)	Ouestion	Expected Answers	Marks
(ii) NO ₃ √ [2] (iii) NO ₃ √ [1] (b) (i) pH = -log[H'] / -log(0.015) √ = 1.82 / 1.8 √ (Not 2) [2] (iii) [H'] = 0.0075 mol dm ⁻³ pH = -log(0.0075) = 2.12 / 2.1 √ [1] (c) (i) K _w = [H'(aq)] [OH'(aq)] √ state symbols not needed [1] (ii) [H'(aq)] = 10 ^{-pH} = 10 ^{-13.54} = 2.88/2.9 × 10 ⁻¹⁴ mol dm ⁻³ √ [NaOH] / [OH'(aq)] = (H'(aq)] = (1.0 × 10 ⁻¹⁴ / 2.88 × 10 ⁻¹⁴ = 0.347 / 0.35 mol dm ⁻³ √ [2] (d) (i) a solution that minimises/resists/opposes pH changes √ [4] (iii) The buffer must contain both CH ₃ COOH and CH ₃ COONa / CH ₃ COO' /weak acid and conjugate base √ [4] Solution A is a mixture of CH ₃ COOH and CH ₃ COONa / / has an excess of acid / is acidic √ Solution B, contains only CH ₃ COONa/ only CH ₃ COO' /only the salt/ is neutral √ CH ₃ COOH(aq) + NaOH(aq) → CH ₃ COONa(aq) + H ₂ O(l) / acid/alkali has been neutralised/ CH ₃ COOH(aq) and NaOH react together √ [4] (e) [H'] increases √ H ₂ O ionises more / for H ₂ O = H' + OH', equilibrium moves to the right √ [2] exo/endo is 'noise'			Marko
(b) (i) pH = -log[H"] / -log(0.015) √ = 1.82 / 1.8 √ (Not 2) [2] (ii) [H"] = 0.0075 mol dm" ³ pH = -log(0.0075) = 2.12 / 2.1 √ [1] (c) (i)	0 (u) (i)	proton donor	[2]
(ii) [H¹] = 0.0075 mol dm³ pH = -log(0.0075) = 2.12 / 2.1 ✓ [1] (c) (i) K _w = [H¹(aq)] [OH¹(aq)] ✓ state symbols not needed [1] (ii) [H¹(aq)] = 10⁻pH = 10⁻13.54 = 2.88/2.9 × 10⁻14 mol dm⁻3 ✓ [NaOH] / [OH¹(aq)] =	(ii)	NO ₃ -✓	[1]
(c) (i) K _w = [H'(aq)] [OH'(aq)] \(\sin \text{ state symbols not needed} \) (ii) [H'(aq)] = 10^{-pH} = 10^{-13.54} = 2.88/2.9 \times 10^{-14} \text{ mol dm}^{-3} \(\sin \) [NaOH] / [OH'(aq)] = \(\frac{K_w}{[H'(aq)]} \) = \(\frac{1.0 \times 10^{-14}}{2.88 \times 10^{-14}} \) = 0.347 / 0.35 \text{ mol dm}^{-3} \(\sin \) (d) (i) a solution that minimisese/resists/opposes pH changes \(\sin \) The buffer must contain both CH ₃ COOH and CH ₃ COONa / CH ₃ COO^-/weak acid and conjugate base \(\sin \) Solution A is a mixture of CH ₃ COOH and CH ₃ COONa / has an excess of acid /is acidic \(\sin \) Solution B, contains only CH ₃ COONa/ only CH ₃ COO^-/only the salt/ is neutral \(\sin \) CH ₃ COOH(aq) + NaOH(aq) \(\rightarrow \) CH ₃ COONa(aq) + H ₂ O(l) / acid/alkali has been neutralised/ CH ₃ COOH(aq) and NaOH react together \(\sin \) (e) [H'] increases \(\sin \) H ₂ O ionises more / for H ₂ O \(\rightarrow \) H' + OH', equilibrium moves to the right \(\sin \) exo/endo is 'noise'	(b) (i)		[2]
(ii) [H'(aq)] = 10 ^{-pH} = 10 ^{-13.54} = 2.88/2.9 × 10 ⁻¹⁴ mol dm ⁻³ ✓ [NaOH] / [OH'(aq)] = K _w	(ii)	$[H^+]$ = 0.0075 mol dm ⁻³ pH = -log(0.0075) = 2.12 / 2.1 \checkmark	[1]
[NaOH] / [OH'(aq)] = $\frac{K_w}{[H'(aq)]} = \frac{1.0 \times 10^{-14}}{2.88 \times 10^{-14}}$ = 0.347 / 0.35 mol dm ⁻³ \checkmark [2] (d) (i) a solution that minimises/resists/opposes pH changes \checkmark (ii) The buffer must contain both CH ₃ COOH and CH ₃ COONa / CH ₃ COO ⁻ /weak acid and conjugate base \checkmark Solution A is a mixture of CH ₃ COOH and CH ₃ COONa / / has an excess of acid / is acidic \checkmark Solution B, contains only CH ₃ COONa/ only CH ₃ COO ⁻ /only the salt/ is neutral \checkmark CH ₃ COOH(aq) + NaOH(aq) \longrightarrow CH ₃ COONa(aq) + H ₂ O(l) / acid/alkali has been neutralised/ CH ₃ COOH(aq) and NaOH react together \checkmark (e) [H'] increases \checkmark H ₂ O ionises more / for H ₂ O \rightleftharpoons H' + OH', equilibrium moves to the right \checkmark [2] exo/endo is 'noise'	(c) (i)	$K_w = [H^*(aq)][OH^*(aq)] \checkmark state symbols not needed$	[1]
(d) (i) a solution that minimises/resists/opposes pH changes \(\frac{1}{2} \) (ii) The buffer must contain both CH3COOH and CH3COONa / CH3COO^-/weak acid and conjugate base \(\frac{1}{2} \) Solution A is a mixture of CH3COOH and CH3COONa / has an excess of acid / is acidic \(\frac{1}{2} \) Solution B, contains only CH3COONa/ only CH3COO^-/only the salt/ is neutral \(\frac{1}{2} \) CH3COOH(aq) + NaOH(aq) \(\to	(ii)	[NaOH] / [OH ⁻ (aq)] = $\frac{K_w}{[H^+(aq)]} = \frac{1.0 \times 10^{-14}}{2.88 \times 10^{-14}}$	[2]
The buffer must contain both CH3COOH and CH3COONa / CH3COOT / weak acid and conjugate base Solution A is a mixture of CH3COOH and CH3COONa / / has an excess of acid / is acidic Solution B, contains only CH3COONa/ only CH3COOT / only the salt/ is neutral CH3COOH(aq) + NaOH(aq) — CH3COONa(aq) + H2O(l) / acid/alkali has been neutralised/ CH3COOH(aq) and NaOH react together (e) [H*] increases H2O ionises more / for H2O = H* + OH*, equilibrium moves to the right [2] exo/endo is 'noise'		= 0.347 / 0.35 mol dm ⁻³ ✓	
Solution A is a mixture of CH ₃ COOH and CH ₃ COONa / / has an excess of acid /is acidic \(Solution B, contains only CH ₃ COONa/ only CH ₃ COO ⁻ /only the salt/ is neutral \(CH ₃ COOH(aq) + NaOH(aq) \(CH ₃ COONa(aq) + H ₂ O(l) / acid/alkali has been neutralised/ CH ₃ COOH(aq) and NaOH react together \((e) [H ⁺] increases \(H ₂ O ionises more / for H ₂ O \(H ⁺ + OH ⁻ , equilibrium moves to the right \([2] exo/endo is 'noise'		The buffer must contain both CH ₃ COOH and CH ₃ COONa /	[1]
H_2O ionises more / for $H_2O \Rightarrow H^+ + OH^-$, equilibrium moves to the right \checkmark [2] exo/endo is 'noise'		Solution A is a mixture of CH ₃ COOH and CH ₃ COONa / / has an excess of acid /is acidic Solution B, contains only CH ₃ COONa/ only CH ₃ COO / only the salt/ is neutral CH ₃ COOH(aq) + NaOH(aq)> CH ₃ COONa(aq) + H ₂ O(l) / acid/alkali has been neutralised/	[4]
	(e)	H_2O ionises more / for $H_2O \rightleftharpoons H^+ + OH^-$, equilibrium moves to the right \checkmark	[2]
() intair in		exo/endo is noise	Total: 15

Abbreviations, annotations and conventions used in the Mark Scheme Abbreviations		
	AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
4 (a)	moles of Cu = 0.68 x 5/1000 = 0.0034 √ mass of Cu = 0.0034 x 63.5 = 0.216 g √ % Cu = 0.216/0.28 = 77% √	[3]
	ratios: Cu = 26.29/63.5 = 0.41	
	empirical formula = CuN₂O9H6 ✓	[2]
	Formula with $3H_2O$ shown separately scores 1: i.e. $CuN_2O_6.3H_2O$ \checkmark Correct formula shown with $(NO_3)_2$ scores 2nd mark: $Cu(NO_3)_2.3H_2O$ \checkmark	
	(Correct answer automatically scores both marks)	[2]
(b)	Cu \longrightarrow Cu ²⁺ : Cu from 0 to +2 \checkmark NO ₃ \longrightarrow NO: N from +5 to +2 \checkmark 3Cu + 8H ⁺ + 2NO ₃ \longrightarrow 3Cu ²⁺ + 2NO + 4H ₂ O \checkmark 'simple balance' as the only creditworthy response scores 1 mark:	[3]
(c)	i.e. $Cu + 4H^{+} + NO_{3}^{-} \longrightarrow Cu^{2+} + NO + 2H_{2}O$ moles of $A = 90/24000 = 3.75 \times 10^{-3} \checkmark$	
(0)	M_{r} of $A = 0.24/3.75 \times 10^{-3} = 64 \checkmark$ Gas is $5O_{2} \checkmark$ $Cu + 2H_{2}SO_{4} \longrightarrow CuSO_{4} + SO_{2} + 2H_{2}O /$ $Cu + 4H^{2} + 5O_{4}^{2-} \longrightarrow Cu^{2+} + SO_{2} + 2H_{2}O /$	
	$Cu + 3H^{+} + HSO_{4}^{-} \longrightarrow Cu^{2+} + SO_{2} + 2H_{2}O \checkmark$	[4]
		Total: 14