2815/01 Trends and Patterns | (| Qu. | Expected Answers | Marks | Additional
Guidance | |---|------------|--|-------|---| | | (a) | (Enthalpy change of/energy change of) atomisation (1) Ba(g) \rightarrow Ba ⁺ (g) + e ⁻ (1) Second electron affinity (1) Ba(s) + $\frac{1}{2}O_2(g) \rightarrow$ BaO(s) (1) | 4 | Ss must be correct throughout No multiples | | | (b) | Impossible/difficult to get gaseous ions (without them reacting)/difficult to vapourise ions and measure the enthalpy change at the same time/AW (1) | 1 | | | (| (c) | Oxide ion is smaller than carbonate ion/oxide ion has a higher charge/electron density/ora (1) (So) stronger attraction between ions in barium oxide/ora (1) | 2 | Must use
correct particle
but only penalise
once | | (| d) | Rb ⁺ , Na ⁺ , Mg ²⁺ , Al ³⁺ (1) and Any two from Idea that polarising power depends on ionic radius and ionic charge/idea that polarising power depends on charge density of ion (1) Rb ⁺ is larger than Na ⁺ /Na ⁺ is larger than Mg ²⁺ /Mg ²⁺ is larger than Al ³⁺ /Al ³⁺ smallest radius/Rb ⁺ largest radius ora (1) Rb ⁺ is less charged than Mg ²⁺ /Mg ²⁺ is less charged than Al ³⁺ /Al ³⁺ highest charge ora (1) | 3 | | | | | V // | 10 | | | 3 (a) moles of $MnO_4^- = 0.000571(1)$ 4 Allow | dance
w ecf within | |--|---| | concentration (of diluted H_2O_2 is 0.143 and of) undiluted is 1.43 mol dm ⁻³ (1) sig fill Concentration = 48.5 g dm ⁻³ (1) (accept range 48.45–48.63 g dm ⁻³) | question w 2 or more igs for first e marking ts w 3 or 4 for ast marking | | (b) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}/$ Unbalanced full equation with all correct species (1) but $H_2O_2 + 2H^+ + 2Fe^{2+} \rightarrow 2H_2O + 2Fe^{3+}$ (2) Allow multile equation with all correct species for the ionic betw | w full marks ne correct c equation veen H ₂ O ₂ Fe ²⁺ w correct iples of ation ore state | | (c) There is no longer a green precipitate/green solid (1) Fe ²⁺ + 2OH ⁻ → Fe(OH) ₂ (1) or Allow precipitate/green solid 2 Allow precipitate/green solid precipitate/green solid precipitate/green solid precipitate/green solid precipitate/green solid precipitate/green solid | w ipitate mark ite symbol n in ation ore state | | (d) (i) -1/1-/-(1) 1 Allow | w O ₂ - | | (ii) Oxygen from -1 to -2/0 to -2 which is reduction (1) 2 Allow either ON control of the contro | w 1 mark for
er 2 correct
changes (1
nd 1 red) | | OR or refer oxida | correct
rence to
ation and
ction from
ON | | (iii) Moles of $KO_2 = 14.1 (1)$ 3 Allow | w ecf within | | Moles of $CO_2 = 7.05$ (1)
Volume of $CO_2 = 168.8$ dm ³ (1)
Allow range 168 to 169.2 ques Allow sig figure two repoint Allow | stion
w 2 or more
gs for first
marking | | 14 | or answer | | Qu. | Expected Answers | Mark | |------------|--|------------| | 2. (a) (i) | Orange to yellow. | 1 | | (ii) | (Named) acid/H ⁺ | 1 | | (iii) | All oxidation numbers worked out for both sides of equation. | 1 | | | ie Cr=+6, O=-2, H=+1 | | | (b) | Moles $Cr_2O_7^{2-}$ used = 0.000348 mol | 1 | | | Moles $Fe^{2+} = 6 \times 0.000348 = 0.002088$ mol | 1 | | | $250 \text{ cm}^3 \text{ Fe}^{2+} = 10 \times 0.00209 = 0.02088 \text{ mol}$ | 1 | | | Mass Fe = 0.02088 x 55.8 = 1.165104 g | 1 | | | % Fe in sample = 1.165104/1.20 x 100 = 97.1% (3 sf) | 1 | | | Allow consequential marking throughout | | | | If candidates use 3 sf from the start then answer is 97.5 % | | | | Allow range from 97.0 – 97.5% | | | | | Total: [8] | | Qu. | Expected Answers | Mark | |------------|--|-------------| | 3. (a) (i) | Emf/voltage/potential difference (of a half cell) (not potential) | 1 | | | Combined with a standard hydrogen half cell | 1 | | (ii) | 298K/25°C, 10 ⁵ Pa/1 Atm, 1 mol dm ⁻³ (all 3 needed) | 1 | | (b) | Voltmeter, salt bridge and complete circuit (salt bridge must be in contact with a solution) | 1 | | | Platinum electrode in the ½Cl₂/Cl⁻ half cell (labelled) | | | | Chlorine gas feed and chloride ions in solution | 1 | | (c) (i) | $BrO_3^- + 6H^+ + 5Br^- \Rightarrow 3Br_2 + 3H_2O$ | 1 | | (0) (1) | correct species | 4 | | | balanced | 1 | | | | 1 | | (ii) | Yellow/orange/brown (solution) (not ppt or solid or gas) | 1 | | (d) | $\text{Cr}_2\text{O}_7^{2-}$ has a more positive electrode potential than Br_2 but less positive than Cl_2 / Cl_2 is a better oxidising agent than $\text{Cr}_2\text{O}_7^{2-}$ but Br_2 is poorer | 1 | | | Credit the working out of cell emf – positive (+0.26) for bromide, negative | | | | (-0.03) for chloride | | | | (accept lower/higher argument) | | | | | Total: [10] | | | | | | Qu. | Expected Answers | Mark | |------------|---|----------| | 4. (a) (i) | 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ | 1 | | (ii) | White | 1 | | | No d-electrons (to absorb visible light) (not does not have a partially filled d-sub shell) | 1 | | (b) (i) | Dative covalent/co-ordinate | 1 | | (ii) | partially filled d-orbitals (accept a suitable diagram) | | | | (Ligands cause) splitting of d-orbital energy levels/lower & higher energy d-orbitals/implication of a gap/d-electrons promoted | 1 | | | Particular frequency of visible light is absorbed to promote electrons | 1 | | (c) | (need to have idea that only part of visible light is absorbed) Little or no absorbance in violet and blue region (between 400 and | 1 | | | 500 nm) rising to maximum absorbance in yellow/orange/red (allow maximum between 600 and 700 nm) | Total: [| | Qu. | Expected Answers | Mark | |-----|---|------------| | 5. | Same structural formula/same atoms & order of bonds but a different arrangement in space (not same molecular formula) | 1 | | | Cis and trans/geometric and optical both mentioned | | | | Correct 3-D diagrams of cis and trans isomers | 1 | | | e.g | 2 | | | | | | | Cis has same ligands adjacent/at 90°. Trans opposite/at 180° (allow this mark from clearly labelled diagrams) | 1 | | | Correct 3-D diagrams of optical isomers. | | | | e.g | 2 | | | | | | | Non-superimposable mirror images | 1 | | | Cis-platin used to treat cancer | 1 | | | Binds to DNA | 1 | | | Prevents replication of cancerous cells/cells dividing | 1 | | | Quality of Written Communication. | , | | | 1 mark to be awarded for a minimum of two grammatically correct sentences with good spelling and punctuation. | | | | | 1 | | | | Total: [12 | | Qu. | Expected Answers | Mark | |-----------|---|------| | 2(a)(i) | OH ⁻ : When [OH ⁻] increases by 2.5, rate increases by 2.5 ✓, so order = 1 (with respect to OH ⁻) ✓ CIO ₂ : When [CIO ₂] increases by 3, rate increases by 9/3 ² ✓, so order = 2 (with respect to CIO ₂) ✓ | 4 | | | For both OH and ClO ₂ , explanation and order to be marked independently | | | 2(a)(ii) | rate = $k[OH^-][CIO_2]^2 \checkmark$ ALLOW $r = k[OH^-][CIO_2]^2$ ALLOW ECF from (a)(i) rate = is essential | 1 | | 2(a)(iii) | $k = \frac{rate}{[OH^-][CIO_2]^2} OR = \frac{6.00 \times 10^{-4}}{0.0300 \times 0.0100^2}$ \checkmark = 200 \checkmark 200 without working scores the first 2 marks ALLOW ECF from an incorrectly rearranged equation units: dm ⁶ mol ⁻² s ⁻¹ \checkmark ALLOW ECF from rate equation (a)(ii) but the units must be derived from the rate equation | 3 | | 2(b)(i) | rate equation shows (2 ClO₂ and) 1 OH⁻ and overall equation shows (2 ClO₂ and) 2 OH⁻
OR Rate equation has a different number of moles of OH⁻ from overall equation ✓ | 1 | | 2(b)(ii) | $2CIO_2(aq) + 2OH^-(aq) \longrightarrow CIO_3^-(aq) + CIO_2^-(aq) + H_2O$
1 mark for $CIO_3^- \checkmark$
1 mark for total equation (conditional on 1st mark) \checkmark | 2 | | | Total: | 11 | | Qu. | Expected Answers | Mark | |------|---|---| | 3(a) | $C_6H_5COOH \square H^+ + C_6H_5COO^- \checkmark$ | 1 | | | Accept $C_6H_5COOH + H_2O \square H_3O^+ + C_6H_5COO^- \checkmark$ | | | | Accept molecular formulae, <i>ie</i> C ₆ H ₅ COOH □ H ⁺ + C ₆ H ₅ COO ⁻ | | | 2/b\ | Equilibrium sign essential | | | 3(b) | $K_{a} = \frac{[H^{+}][C_{6}H_{5}COO^{-}]}{[C_{6}H_{5}COOH]} \checkmark$ | 1 | | | [C ₆ H ₅ COOH] | | | 3(c) | concentration = $\frac{3.40}{122}$ \checkmark = 0.0279 (mol dm ⁻³) \checkmark | 5 | | | Accept 0.028 up to calculator value of 0.027868852(46) (first mark for M_r of benzoic acid – incorrect answer here will give ecf for remainder of question) | | | | $[H^{+}] = \sqrt{(K_a \times [C_6 H_5 COOH])} \text{ OR } \sqrt{(6.30 \times 10^{-5} \times 0.0279)} \checkmark$ | 1 | | | = $1.33 \times 10^{-3} \text{ (mol dm}^{-3}\text{)} \checkmark$ | | | | pH = $-\log [H^+]$ = $-\log 1.33 \times 10^{-3}$ = 2.89 ✓ answer = 2.88 if no rounding. | | | | DO NOT ALLOW 2.9 unless more d.p. shown elsewhere | | | | pH must be greater than 1 and less than 7 | | | | If no aguero root mill = 5.70 | | | | If no square root, pH = 5.76 4 marks If g dm ⁻³ used instead on mol dm ⁻³ , pH = $1.83-1.84$ 3 marks | | | | Watch out for evidence of correct M_r as there may be another mark | | | | | | | 3(d) | buffer minimises pH changes ✓ | 1 | | | DO NOT ALLOW pH is constant HA discussion is OK here | | | | C ₆ H ₅ COOH reacts with added alkali | | | | $/ C_6H_5COOH + OH^- \rightarrow H_2O + C_6H_5COO^-/$ | | | | added alkali reacts with H ⁺ /H ⁺ + OH ⁻ → H ₂ O ✓ | | | | \rightarrow C ₆ H ₅ COO ⁻ /C ₆ H ₅ COOH□ H ⁺ + C ₆ H ₅ COO ⁻ \rightarrow right (counteracts change) \checkmark | | | | C ₆ H₅COO⁻ reacts with added acid or H⁺ ✓ | EXPL | | | \rightarrow C ₆ H ₅ COOH/ C ₆ H ₅ COOH □ H ⁺ + C ₆ H ₅ COO ⁻ \rightarrow left (counteracts change) \checkmark | 4 | | | $[H^{+}] = K_a \times \frac{[C_6 H_5 COOH]}{[C_6 H_5 COO^{-}]} \checkmark$ | | | | = $6.30 \times 10^{-5} \times \frac{0.105}{0.125}$ OR $5.292 \times 10^{-5} \checkmark$ | CALC | | | pH = $-\log (5.292 \times 10^{-5}) = 4.28 \checkmark (calculator: 4.276380164)$ ALLOW 4.3 | 3 | | | OR ALTERNATIVE APPROACH USING H.H. EQUATION:
$pK_a = -\log 6.30 \times 10^{-5} = 4.20 \checkmark$ | | | pH = p K_a + log $\frac{[C_6H_5COO^-]}{[C_6H_5COOH]}$ OR pH = -log K_a + log $\frac{[C_6H_5COO^-]}{[C_6H_5COOH]}$ \checkmark pH = 4.20 + 0.08 = 4.28 \checkmark QWC: correct equilibrium shift discussed at least once \checkmark | 1 | |---|----| | Total: | 16 | | Qu. | Expected Answers | Mark | |-----------|--|------| | 4(a)(i) | 0.1 mol dm ⁻³ ✓ | 1 | | 4(a)(ii) | final pH (approximately) 11/equivalence point <7 ✓ | 1 | | | ALLOW correct reference to shape of curve: | | | | ie No vertical part after 7/starts to curve at 7 | | | 4(a)(iii) | NH ₄ NO ₃ ✓
ALLOW N ₂ H ₄ O ₃ | 1 | | 4(a)(iv) | resazurin ✓ | 1 | | 4(a)(v) | sharp rise after addition of 12.5 cm³/half the volume of NH₃ ✓ final pH higher ✓ | 2 | | | For 'sharp rise', ALLOW neutralisation/equivalence/end point | | | 4(b)(i) | $Mg + 2HNO_3 \longrightarrow Mg(NO_3)_2 + H_2 \checkmark$ | 2 | | | $Mg + 2H^+ \longrightarrow Mg^{2+} + H_2 \checkmark$ | | | | IGNORE state symbols | | | | DO NOT ALLOW 2NO ₃ ⁻ added to both sides of ionic equation | | | 4(b)(ii) | With dilute HNO₃: H (reduced) from +1 to 0 ✓ | 2 | | | With conc. HNO₃: N (reduced) from +5 to +4 ✓ | | | | Total: | 10 |