2815/01 Trends and Patterns

(Qu.	Expected Answers	Marks	Additional Guidance
	(a)	(Enthalpy change of/energy change of) atomisation (1) Ba(g) \rightarrow Ba ⁺ (g) + e ⁻ (1) Second electron affinity (1) Ba(s) + $\frac{1}{2}O_2(g) \rightarrow$ BaO(s) (1)	4	Ss must be correct throughout No multiples
	(b)	Impossible/difficult to get gaseous ions (without them reacting)/difficult to vapourise ions and measure the enthalpy change at the same time/AW (1)	1	
((c)	Oxide ion is smaller than carbonate ion/oxide ion has a higher charge/electron density/ora (1) (So) stronger attraction between ions in barium oxide/ora (1)	2	Must use correct particle but only penalise once
(d)	Rb ⁺ , Na ⁺ , Mg ²⁺ , Al ³⁺ (1) and Any two from Idea that polarising power depends on ionic radius and ionic charge/idea that polarising power depends on charge density of ion (1) Rb ⁺ is larger than Na ⁺ /Na ⁺ is larger than Mg ²⁺ /Mg ²⁺ is larger than Al ³⁺ /Al ³⁺ smallest radius/Rb ⁺ largest radius ora (1) Rb ⁺ is less charged than Mg ²⁺ /Mg ²⁺ is less charged than Al ³⁺ /Al ³⁺ highest charge ora (1)	3	
		V //	10	

3 (a) moles of $MnO_4^- = 0.000571(1)$ 4 Allow	dance w ecf within
concentration (of diluted H_2O_2 is 0.143 and of) undiluted is 1.43 mol dm ⁻³ (1) sig fill Concentration = 48.5 g dm ⁻³ (1) (accept range 48.45–48.63 g dm ⁻³)	question w 2 or more igs for first e marking ts w 3 or 4 for ast marking
(b) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}/$ Unbalanced full equation with all correct species (1) but $H_2O_2 + 2H^+ + 2Fe^{2+} \rightarrow 2H_2O + 2Fe^{3+}$ (2) Allow multile equation with all correct species for the ionic betw	w full marks ne correct c equation veen H ₂ O ₂ Fe ²⁺ w correct iples of ation ore state
(c) There is no longer a green precipitate/green solid (1) Fe ²⁺ + 2OH ⁻ → Fe(OH) ₂ (1) or Allow precipitate/green solid 2 Allow precipitate/green solid precipitate/green solid precipitate/green solid precipitate/green solid precipitate/green solid precipitate/green solid	w ipitate mark ite symbol n in ation ore state
(d) (i) -1/1-/-(1) 1 Allow	w O ₂ -
(ii) Oxygen from -1 to -2/0 to -2 which is reduction (1) 2 Allow either ON control of the contro	w 1 mark for er 2 correct changes (1 nd 1 red)
OR or refer oxida	correct rence to ation and ction from ON
(iii) Moles of $KO_2 = 14.1 (1)$ 3 Allow	w ecf within
Moles of $CO_2 = 7.05$ (1) Volume of $CO_2 = 168.8$ dm ³ (1) Allow range 168 to 169.2 ques Allow sig figure two repoint Allow	stion w 2 or more gs for first marking
14	or answer

Qu.	Expected Answers	Mark
2. (a) (i)	Orange to yellow.	1
(ii)	(Named) acid/H ⁺	1
(iii)	All oxidation numbers worked out for both sides of equation.	1
	ie Cr=+6, O=-2, H=+1	
(b)	Moles $Cr_2O_7^{2-}$ used = 0.000348 mol	1
	Moles $Fe^{2+} = 6 \times 0.000348 = 0.002088$ mol	1
	$250 \text{ cm}^3 \text{ Fe}^{2+} = 10 \times 0.00209 = 0.02088 \text{ mol}$	1
	Mass Fe = 0.02088 x 55.8 = 1.165104 g	1
	% Fe in sample = 1.165104/1.20 x 100 = 97.1% (3 sf)	1
	Allow consequential marking throughout	
	If candidates use 3 sf from the start then answer is 97.5 %	
	Allow range from 97.0 – 97.5%	
		Total: [8]

Qu.	Expected Answers	Mark
3. (a) (i)	Emf/voltage/potential difference (of a half cell) (not potential)	1
	Combined with a standard hydrogen half cell	1
(ii)	298K/25°C, 10 ⁵ Pa/1 Atm, 1 mol dm ⁻³ (all 3 needed)	1
(b)	Voltmeter, salt bridge and complete circuit (salt bridge must be in contact with a solution)	1
	Platinum electrode in the ½Cl₂/Cl⁻ half cell (labelled)	
	Chlorine gas feed and chloride ions in solution	1
(c) (i)	$BrO_3^- + 6H^+ + 5Br^- \Rightarrow 3Br_2 + 3H_2O$	1
(0) (1)	correct species	4
	balanced	1
		1
(ii)	Yellow/orange/brown (solution) (not ppt or solid or gas)	1
(d)	$\text{Cr}_2\text{O}_7^{2-}$ has a more positive electrode potential than Br_2 but less positive than Cl_2 / Cl_2 is a better oxidising agent than $\text{Cr}_2\text{O}_7^{2-}$ but Br_2 is poorer	1
	Credit the working out of cell emf – positive (+0.26) for bromide, negative	
	(-0.03) for chloride	
	(accept lower/higher argument)	
		Total: [10]

Qu.	Expected Answers	Mark
4. (a) (i)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	1
(ii)	White	1
	No d-electrons (to absorb visible light) (not does not have a partially filled d-sub shell)	1
(b) (i)	Dative covalent/co-ordinate	1
(ii)	partially filled d-orbitals (accept a suitable diagram)	
	(Ligands cause) splitting of d-orbital energy levels/lower & higher energy d-orbitals/implication of a gap/d-electrons promoted	1
	Particular frequency of visible light is absorbed to promote electrons	1
(c)	(need to have idea that only part of visible light is absorbed) Little or no absorbance in violet and blue region (between 400 and	1
	500 nm) rising to maximum absorbance in yellow/orange/red (allow maximum between 600 and 700 nm)	Total: [

Qu.	Expected Answers	Mark
5.	Same structural formula/same atoms & order of bonds but a different arrangement in space (not same molecular formula)	1
	Cis and trans/geometric and optical both mentioned	
	Correct 3-D diagrams of cis and trans isomers	1
	e.g	2
	Cis has same ligands adjacent/at 90°. Trans opposite/at 180° (allow this mark from clearly labelled diagrams)	1
	Correct 3-D diagrams of optical isomers.	
	e.g	2
	Non-superimposable mirror images	1
	Cis-platin used to treat cancer	1
	Binds to DNA	1
	Prevents replication of cancerous cells/cells dividing	1
	Quality of Written Communication.	,
	1 mark to be awarded for a minimum of two grammatically correct sentences with good spelling and punctuation.	
		1
		Total: [12

Qu.	Expected Answers	Mark
2(a)(i)	OH ⁻ : When [OH ⁻] increases by 2.5, rate increases by 2.5 ✓, so order = 1 (with respect to OH ⁻) ✓ CIO ₂ : When [CIO ₂] increases by 3, rate increases by 9/3 ² ✓, so order = 2 (with respect to CIO ₂) ✓	4
	For both OH and ClO ₂ , explanation and order to be marked independently	
2(a)(ii)	rate = $k[OH^-][CIO_2]^2 \checkmark$ ALLOW $r = k[OH^-][CIO_2]^2$ ALLOW ECF from (a)(i) rate = is essential	1
2(a)(iii)	$k = \frac{rate}{[OH^-][CIO_2]^2} OR = \frac{6.00 \times 10^{-4}}{0.0300 \times 0.0100^2}$ \checkmark = 200 \checkmark 200 without working scores the first 2 marks ALLOW ECF from an incorrectly rearranged equation units: dm ⁶ mol ⁻² s ⁻¹ \checkmark ALLOW ECF from rate equation (a)(ii) but the units must be derived from the rate equation	3
2(b)(i)	rate equation shows (2 ClO₂ and) 1 OH⁻ and overall equation shows (2 ClO₂ and) 2 OH⁻ OR Rate equation has a different number of moles of OH⁻ from overall equation ✓	1
2(b)(ii)	$2CIO_2(aq) + 2OH^-(aq) \longrightarrow CIO_3^-(aq) + CIO_2^-(aq) + H_2O$ 1 mark for $CIO_3^- \checkmark$ 1 mark for total equation (conditional on 1st mark) \checkmark	2
	Total:	11

Qu.	Expected Answers	Mark
3(a)	$C_6H_5COOH \square H^+ + C_6H_5COO^- \checkmark$	1
	Accept $C_6H_5COOH + H_2O \square H_3O^+ + C_6H_5COO^- \checkmark$	
	Accept molecular formulae, <i>ie</i> C ₆ H ₅ COOH □ H ⁺ + C ₆ H ₅ COO ⁻	
2/b\	Equilibrium sign essential	
3(b)	$K_{a} = \frac{[H^{+}][C_{6}H_{5}COO^{-}]}{[C_{6}H_{5}COOH]} \checkmark$	1
	[C ₆ H ₅ COOH]	
3(c)	concentration = $\frac{3.40}{122}$ \checkmark = 0.0279 (mol dm ⁻³) \checkmark	5
	Accept 0.028 up to calculator value of 0.027868852(46) (first mark for M_r of benzoic acid – incorrect answer here will give ecf for remainder of question)	
	$[H^{+}] = \sqrt{(K_a \times [C_6 H_5 COOH])} \text{ OR } \sqrt{(6.30 \times 10^{-5} \times 0.0279)} \checkmark$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	= $1.33 \times 10^{-3} \text{ (mol dm}^{-3}\text{)} \checkmark$	
	pH = $-\log [H^+]$ = $-\log 1.33 \times 10^{-3}$ = 2.89 ✓ answer = 2.88 if no rounding.	
	DO NOT ALLOW 2.9 unless more d.p. shown elsewhere	
	pH must be greater than 1 and less than 7	
	If no aguero root mill = 5.70	
	If no square root, pH = 5.76 4 marks If g dm ⁻³ used instead on mol dm ⁻³ , pH = $1.83-1.84$ 3 marks	
	Watch out for evidence of correct M_r as there may be another mark	
3(d)	buffer minimises pH changes ✓	1
	DO NOT ALLOW pH is constant HA discussion is OK here	
	C ₆ H ₅ COOH reacts with added alkali	
	$/ C_6H_5COOH + OH^- \rightarrow H_2O + C_6H_5COO^-/$	
	added alkali reacts with H ⁺ /H ⁺ + OH ⁻ → H ₂ O ✓	
	\rightarrow C ₆ H ₅ COO ⁻ /C ₆ H ₅ COOH□ H ⁺ + C ₆ H ₅ COO ⁻ \rightarrow right (counteracts change) \checkmark	
	C ₆ H₅COO⁻ reacts with added acid or H⁺ ✓	EXPL
	\rightarrow C ₆ H ₅ COOH/ C ₆ H ₅ COOH □ H ⁺ + C ₆ H ₅ COO ⁻ \rightarrow left (counteracts change) \checkmark	4
	$[H^{+}] = K_a \times \frac{[C_6 H_5 COOH]}{[C_6 H_5 COO^{-}]} \checkmark$	
	= $6.30 \times 10^{-5} \times \frac{0.105}{0.125}$ OR $5.292 \times 10^{-5} \checkmark$	CALC
	pH = $-\log (5.292 \times 10^{-5}) = 4.28 \checkmark (calculator: 4.276380164)$ ALLOW 4.3	3
	OR ALTERNATIVE APPROACH USING H.H. EQUATION: $pK_a = -\log 6.30 \times 10^{-5} = 4.20 \checkmark$	

pH = p K_a + log $\frac{[C_6H_5COO^-]}{[C_6H_5COOH]}$ OR pH = -log K_a + log $\frac{[C_6H_5COO^-]}{[C_6H_5COOH]}$ \checkmark pH = 4.20 + 0.08 = 4.28 \checkmark QWC: correct equilibrium shift discussed at least once \checkmark	1
Total:	16

Qu.	Expected Answers	Mark
4(a)(i)	0.1 mol dm ⁻³ ✓	1
4(a)(ii)	final pH (approximately) 11/equivalence point <7 ✓	1
	ALLOW correct reference to shape of curve:	
	ie No vertical part after 7/starts to curve at 7	
4(a)(iii)	NH ₄ NO ₃ ✓ ALLOW N ₂ H ₄ O ₃	1
4(a)(iv)	resazurin ✓	1
4(a)(v)	sharp rise after addition of 12.5 cm³/half the volume of NH₃ ✓ final pH higher ✓	2
	For 'sharp rise', ALLOW neutralisation/equivalence/end point	
4(b)(i)	$Mg + 2HNO_3 \longrightarrow Mg(NO_3)_2 + H_2 \checkmark$	2
	$Mg + 2H^+ \longrightarrow Mg^{2+} + H_2 \checkmark$	
	IGNORE state symbols	
	DO NOT ALLOW 2NO ₃ ⁻ added to both sides of ionic equation	
4(b)(ii)	With dilute HNO₃: H (reduced) from +1 to 0 ✓	2
	With conc. HNO₃: N (reduced) from +5 to +4 ✓	
	Total:	10