

ADVANCED GCE CHEMISTRY

Trends and Patterns

2815/01

Candidates answer on the Question Paper A calculator may be used for this paper

OCR Supplied Materials:

• Data Sheet for Chemistry (inserted)

Other Materials Required:

Scientific calculator

Wednesday 27 January 2010 Morning

Duration: 1 hour

Candidate	Candidate
Forename	Surname
Centre Number	Candidate Number
	Canadate Number

INSTRUCTIONS TO CANDIDATES

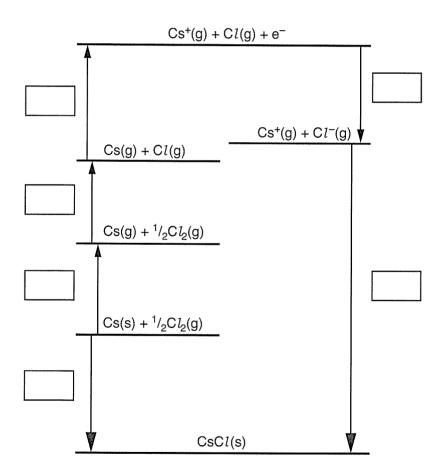
- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Write your answer to each question in the space provided, however additional paper may be used if necessary.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 45.
- You will be awarded marks for the quality of written communication where this
 is indicated in the question.
- You may use a scientific calculator.
- A copy of the Data Sheet for Chemistry is provided as an insert with this
 question paper.
- You are advised to show all the steps in any calculations.
- This document consists of 12 pages. Any blank pages are indicated.

		-
1		
2		
3		
4		
Total	25	

Examiner's Use Only:


2
Answer all the questions.

1 The lattice enthalpy of caesium chloride, CsCl, can be calculated using a Born–Haber cycle.

The table below shows the enthalpy changes and corresponding data for this cycle.

enthalpy change	label	energy/kJ mol ⁻¹
lattice enthalpy of caesium chloride	Α	?
1st electron affinity of chlorine	В	-349
1st ionisation energy of caesium	С	+376
atomisation of chlorine	D	+122
formation of caesium chloride	E	-443
atomisation of caesium	F	+76

(a) On the cycle below, put the letter for each enthalpy change in the appropriate box.

(b) Use the Born-Haber cycle to calculate the lattice enthalpy of caesium chloride.

(c)	answer =

[Total: 8]

3	Aqueous hydrogen peroxide, H ₂ O ₂ , is used to sterilise contact lenses. H ₂ O ₂ decomposes to make
	oxygen and water, as shown in the equation below.

$$2H_2O_2(aq) \longrightarrow 2H_2O(I) + O_2(g)$$

	-1.2-2(4,4,7)
(a)	Decomposition of hydrogen peroxide is a redox reaction.
	Using oxidation numbers, show that oxidation and reduction take place.
	[2]
(b)	The concentration of an aqueous solution of hydrogen peroxide can be determined by titration. Aqueous potassium manganate(VII), $KMnO_4$, is titrated against a solution of hydrogen peroxide in the presence of acid.
	The half-equation for the oxidation of $\rm H_2O_2$ is as follows.
	$H_2O_2(aq) \longrightarrow 2H^+(aq) + O_2(g) + 2e^-$
	The half-equation for the reduction of acidified MnO ₄ ⁻ is as follows.
	$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O(I)$
	(i) Construct the equation for the reaction between H ₂ O ₂ , MnO ₄ ⁻ ions and H ⁺ ions.
	[2]

(ii) A stade it followed the procedure pero	(ii)	(ii') A student	followed	the	procedure	belov	٧:
---	------	---	-----	-------------	----------	-----	-----------	-------	----

- Pipette 25.0 cm³ of aqueous hydrogen peroxide into a conical flask;
- Add sulphuric acid to acidify the hydrogen peroxide;
- Titrate this sample against a solution containing 0.0150 mol dm⁻³ MnO₄⁻(aq) ions.

 $23.35\,\mathrm{cm^3}$ of the solution containing $\mathrm{MnO_4}^-\!(\mathrm{aq})$ ions is required.

 $2\,\mathrm{mol}\;\mathrm{MnO_4}^-$ reacts with $5\,\mathrm{mol}\,\mathrm{H_2O_2}.$

Calculate the concentration, in $\mbox{mol}\,\mbox{dm}^{-3}$, of the aqueous hydrogen peroxide.

	concentration = mol dm ⁻³ [3]
(c) A	Acidified hydrogen peroxide oxidises Fe ²⁺ (aq) to Fe ³⁺ (aq).
D	Describe a simple chemical test to show the presence of Fe ³⁺ (aq).
n	ame of reagent used
ol	bservation
	[2]
	[Total: 9]

© OCR 2010

OOF	spen is an example of a transition element.
(a)	Complete the electronic configuration for a copper(II) ion, Cu ²⁺ , and use it to explain why copper is a transition element.
	Cu ²⁺ : 1s ² 2s ² 2p ⁶
	explanation
	[2]
(b)	In this question, one mark is available for the quality of spelling, punctuation and grammar.
	Transition elements form complex ions.
	Explain what is meant by the terms complex ion and ligand.
	 Using complex ions of copper, give two examples of ligand substitution reactions that are accompanied by a colour change. Include equations in your answer.
	 Describe, using suitable examples and 3-D diagrams, two different shapes of complex ions.

[12]
Quality of Written Communication [1]
[Total: 15]

END OF QUESTION PAPER

Answer all the questions.

Trar	nsition metal compounds commonly underg	go ligand substitution reactions.	
(a)	What is meant by the term ligand substitu	ition?	
			[2]
(b)	The following equilibrium is readily establi	shed.	
	$[Co(H_2O)_6]^{2+} + 4Cl^{-}$	\rightleftharpoons [CoC l_4] ²⁻ + 6H ₂ O	
	In the boxes below, draw the 3-D shape or	f each complex ion.	
	[Co(H ₂ O) ₆] ²⁺	[CoC l ₄] ²⁻	

1

(c)	Cobalt also forms complex ions with an oxidation state of +3. The following standard electrode
	potentials refer to cobalt(III) complexes.

$$[\text{Co}(\text{H}_2\text{O})_6]^{3+} + \text{e}^- \iff [\text{Co}(\text{H}_2\text{O})_6]^{2+}$$
 $E^{\Theta} = +1.82\text{V}$ $[\text{Co}(\text{NH}_3)_6]^{3+} + \text{e}^- \iff [\text{Co}(\text{NH}_3)_6]^{2+}$ $E^{\Theta} = +0.11\text{V}$

(i) Which of the four complexes above is the strongest reducing agent?

	Explain your answer.
	[3]
(ii)	Suggest why the cobalt(III) oxidation state is more stable in ammonia than in water.
	F-41

(d) Vanadium has several oxidation states in its aqueous ions.

Complete the ta	ble below.			
	VO ₂ +(aq)	VO ²⁺ (aq)	V ³⁺ (aq)	V ²⁺ (aq)
oxidation state of vanadium			+3	+2
coloyr	yellow		green	
				[4]

[Total: 12]

2 A sample of impure copper was analysed to find its percentage by mass of copper.

A solution was prepared by dissolving a sample of 8.95 g of the impure metal in dilute nitric acid to give 250 cm³ of solution. The impurities did not dissolve and were filtered from the solution.

The copper was all converted into Cu²⁺.

An excess of potassium iodide, KI(aq), was added to 25.0 cm³ of this solution. lodine formed:

$$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_{2}(aq)$$

The iodine produced was titrated with 0.500 mol dm⁻³ sodium thiosulphate.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

Starch was added near the end-point to make the colour change easier to observe.

The average titre obtained was 23.50 cm³ of the thiosulphate solution.

(a)	(i)	State the oxidation number of sulphur in S ₂ O ₃ ²⁻ .	
			. [1]
	(ii)	Calculate the amount, in moles, of S ₂ O ₃ ²⁻ ions in the average titre.	

(iii) Calculate the percentage, by mass, of copper present in the sample of the impure copper.

Give your answer to three significant figures.

3	(a)	The standard electrod	de potentials for two	redox sys	tems are	shown b	oelow.
---	-----	-----------------------	-----------------------	-----------	----------	---------	--------

$$Br_2(aq) + 2e^- \iff 2Br^-(aq)$$
 $E^{\theta} = +1.09V$ $Co^{2+}(aq) + 2e^- \iff Co(s)$ $E^{\theta} = -0.28V$

(i) Draw a labelled diagram of the standard cell formed using half-cells based on the two redox systems above.

		[5]
(ii)	Calculate the standard cell potential, E^{\bullet} , for this cell.	
		[1]
iii)	Write an equation for the overall cell reaction.	
		[1]
iv)	Identify the redox system in which reduction occurs. Explain your answer.	
	redox system	
	explanation	
		[2]

(b) An environmental chemist investigated the chloride ion concentration in a sample of water. She decided to convert the chloride ions into chlorine.

The standard electrode potentials of three redox systems are given below.

Suggest with reasons, whether acidified manganate(VII) and/or acidified dichromate(VI) would be suitable to convert chloride ions into chlorine.

	[2]
reason	
suitable reagent(s)	

[Total: 11]

© OCR 2010 Turn over

In this question, one mark is available for the quality of spelling, punctuation and grammar. This question relates to the chemistry of chromium. 4.000g of hydrated chromium(III) chloride, CrCl ₃ ·xH ₂ O, is reacted to remove all of its water of crystallisation. After removal of the water of crystallisation, the residue weighed 2.380 g. An aqueous solution of CrCl ₃ ·xH ₂ O contains the complex ion [Cr(H ₂ O) ₄ Cl ₂] ⁺ which shows stereoisomerism. When an aqueous solution of chromium(III) chloride is reacted with aqueous sodium hydroxide, followed by hydrogen peroxide, a solution containing chromate(VI) ions is formed. • Calculate the value of x in the formula CrCl ₃ ·xH ₂ O. • Using 3-D diagrams, describe the stereoisomerism in [Cr(H ₂ O) ₄ Cl ₂] ⁺ . • Outline flow phramate(VI) fons can be converted the dichromate(VI) ions/Using a balanced solution, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in aqueous solution. State clearly any observations associated with this Equilibrium.		8
 4.000 g of hydrated chromium(III) chloride, CrCl₃.xH₂O, is reacted to remove all of its water of crystallisation. After removal of the water of crystallisation, the residue weighed 2.380 g. An aqueous solution of CrCl₃.xH₂O contains the complex ion [Cr(H₂O)₄Cl₂]⁺ which shows stereoisomerism. When an aqueous solution of chromium(III) chloride is reacted with aqueous sodium hydroxide, followed by hydrogen peroxide, a solution containing chromate(VI) ions is formed. Calculate the value of x in the formula CrCl₃.xH₂O. Using 3-D diagrams, describe the stereoisomerism in [Cr(H₂O)₄Cl₂]⁺. Outline how chromate(VI) ions can be converted into dichromate(VI) ions? Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in 	ļ	In this question, one mark is available for the quality of spelling, punctuation and grammar.
After removal of the water of crystallisation, the residue weighed 2.380 g. An aqueous solution of $CrCl_3.xH_2O$ contains the complex ion $[Cr(H_2O)_4Cl_2]^+$ which shows stereoisomerism. When an aqueous solution of chromium(III) chloride is reacted with aqueous sodium hydroxide, followed by hydrogen peroxide, a solution containing chromate(VI) ions is formed. • Calculate the value of x in the formula $CrCl_3.xH_2O$. • Using 3-D diagrams, describe the stereoisomerism in $[Cr(H_2O)_4Cl_2]^+$. • Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in		This question relates to the chemistry of chromium.
An aqueous solution of CrCl ₃ .xH ₂ O contains the complex ion [Cr(H ₂ O) ₄ Cl ₂] ⁺ which shows stereoisomerism. When an aqueous solution of chromium(III) chloride is reacted with aqueous sodium hydroxide, followed by hydrogen peroxide, a solution containing chromate(VI) ions is formed. • Calculate the value of x in the formula CrCl ₃ .xH ₂ O. • Using 3-D diagrams, describe the stereoisomerism in [Cr(H ₂ O) ₄ Cl ₂] ⁺ . • Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in		4.000 g of hydrated chromium(III) chloride, $CrCl_3.xH_2O$, is reacted to remove all of its water of crystallisation.
 stereoisomerism. When an aqueous solution of chromium(III) chloride is reacted with aqueous sodium hydroxide, followed by hydrogen peroxide, a solution containing chromate(VI) ions is formed. Calculate the value of x in the formula CrCl₃.xH₂O. Using 3-D diagrams, describe the stereoisomerism in [Cr(H₂O)₄Cl₂]⁺. Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(XI) ions in 		After removal of the water of crystallisation, the residue weighed 2.380 g.
 Calculate the value of x in the formula CrCl₃.xH₂O. Using 3-D diagrams, describe the stereoisomerism in [Cr(H₂O)₄Cl₂]⁺. Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in 		An aqueous solution of ${\rm CrC}l_3.{\it x}{\rm H_2O}$ contains the complex ion $[{\rm Cr(H_2O)_4C}l_2]^+$ which shows stereoisomerism.
 Using 3-D diagrams, describe the stereoisomerism in [Cr(H₂O)₄Cl₂]⁺. Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in 		When an aqueous solution of chromium(III) chloride is reacted with aqueous sodium hydroxide, followed by hydrogen peroxide, a solution containing chromate(VI) ions is formed.
Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(XI) ions in		• Calculate the value of \boldsymbol{x} in the formula $CrCl_3$. $\boldsymbol{x}H_2O$.
Outline how chromate(VI) ions can be converted into dichromate(VI) ions Tusing a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in aqueous solution. State clearly any observations associated with this equilibrium.		 Using 3-D diagrams, describe the stereoisomerism in [Cr(H₂O)₄Cl₂]⁺.
		Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in aqueous solution. State clearly any observations associated with this equilibrium.

Answer all the questions.

1 In the UK, almost all sulphuric acid, H₂SO₄, is manufactured by the Contact process.

One stage in the Contact process involves the reaction between sulphur dioxide and oxygen.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The table below shows values of $K_{\rm p}$ for this equilibrium at different temperatures.

/	temperature /°C	$K_{\rm p}$ / kPa ⁻¹
	25	4.0 × 10 ²²
	200	2.5 × 10 ⁸
	800	1.3 × 10 ⁻³

(i) Write the expression for the equilibrium constant, K, for this equilibrium.

(ii) What does this value of K_p suggest about the position of equilibrium at 25°C and the relative equilibrium proportions of the reactants and products?

[2]

[1]

(b) Predict how the equilibrium position of this equilibrium is affected by the following changes.
Explain your answers.

(i) The temperature is increased whilst keeping the pressure constant.

	(ii)	The pressure is increased whilst keeping the temperature constant.
		effect on equilibrium position
		[1]
		effect on partial pressure of SO ₃ (g)
		[1]
(c)	An	equilibrium is set up for the SO ₂ , O ₂ , SO ₃ system at 400 °C.
	Att	his temperature,
	•	the equilibrium partial pressure of SO ₂ is 25 kPa;
	•	the equilibrium partial pressure of O ₂ is 125 kPa;
	•	$K_{\rm p} = 3.0 \times 10^2 \mathrm{kPa}^{-1}$.
	Cal	culate the equilibrium partial pressure of 80 ₃ at 400 °C.
	Her	nce determine the molar percentage of SO ₃ in the equilibrium mixture at 400 °C.
	/	
		answer = % [3]
(d)	SO	ne UK, almost all the sulphuric acid manufactured uses sulphur as a starting material for $_2$ production. In some countries, metal ores such as zinc sulphide, ZnS, are used instead ulphur to form ${\rm SO}_2$ by heating in air.
	(i)	Construct a balanced equation to show the reaction that takes place when zinc sulphide is heated in air.
		[2]
	(ii)	Suggest why countries may find it more economic to manufacture sulphuric acid from zinc sulphide instead of from sulphur.
		[1]
		[Total: 13]

© OCR 2010 Turn over

iorn	gest a bal n aqueous	anced equation for			(aq), forming iodine, aq), I ⁻ (aq) and H ⁺ (a
I [–] (a)	ee experir aq) and H ⁺	nents were carrie (aq). The initial rate	ed out using difference of I ₂	erent initial conce was measured for	entrations of $\rm H_2O_2$ reach experiment.
The	experime	ntal results are sho	wn below.		
expe	riment	[H ₂ O ₂ (aq)] /mol dm ⁻³	[I ⁻ (aq)] /mol dm ⁻³	[H ⁺ (aq)] /mol dm ⁻³	rate /mol dm ⁻³ s ⁻¹
	1	0.050	0.010	0.005	5.75×10^{-6}
	2	0.050	0.020	0.005	1.15 × 10 ⁻⁵
	3	0.050	0.040	0.010	2.30×10^{-5}
(ii)	This reac	tion is first order wi	th respect to H ₂ O ₂	2.	
	Use this i	nformation and you	ır answers to (i) to	write the rate equ	ation for this reaction
		Ala a	k for this reaction	. State the units fo	* 1c

(c)	Нус	drogen peroxide readily decomposes to give water and oxygen.
	Hyc use	drogen peroxide is sold by volume strength. For example, 40 volume hydrogen peroxide is d to bleach hair, fur and bones.
	40 y	volume $\rm H_2O_2$ produces 40 volumes of oxygen gas, measured at room temperature and ssure, r.t.p., for each volume of aqueous $\rm H_2O_2$ solution.
	(i)	Construct an equation for the decomposition of hydrogen peroxide.
		[1]
	(ii)	Determine the concentration, in mol dm ⁻³ , of 40 volume hydrogen peroxide.
		1 mol of O ₂ (g) occupies 24.0 dm ³ at r.t.p.
		Show all your working clearly.

answer = $mol dm^{-3}$ [3]

[Total: 14]

© OCR 2010

	o qu	estion looks at several acids.
(a)	Hye the	droiodic acid, HI(aq), is a strong acid that is an aqueous solution of hydrogen iodide gas. In laboratory, hydroiodic acid is prepared by the method below.
	gas	mixture of iodine and water is put into a flask. The mixture is stirred and hydrogen sulphide s , $H_2S(g)$, is bubbled through the mixture for several hours. The mixture becomes yellow as phur separates out.
	The	e sulphur is filtered off and the solution is purified by fractional distillation.
	A 2	225 cm ³ sample of hydroiodic acid is collected containing 47.2g of HI.
	(i)	Construct a balanced equation, with state symbols, for the preparation of hydroiodic acid from iodine and hydrogen sulphide.
		[2]
	(ii)	Calculate the pH of the hydroiodic acid sample that is collected.
4.		pH =[2]
(b)	Eth	anoic acid, CH ₃ COOH, is a weak acid with a $K_{\rm a}$ value of 1.70 \times 10 ⁻⁵ mol dm ⁻³ .
(b)	Eth	
(b)		anoic acid, CH ₃ COOH, is a weak acid with a $K_{\rm a}$ value of 1.70 \times 10 ⁻⁵ mol dm ⁻³ .
(b)		anoic acid, CH ₃ COOH, is a weak acid with a K_a value of 1.70 × 10 ⁻⁵ mol dm ⁻³ . Write an equation for the dissociation of ethanoic acid.
(b)	(i)	anoic acid, CH_3COOH , is a weak acid with a K_a value of 1.70×10^{-5} mol dm ⁻³ . Write an equation for the dissociation of ethanoic acid. [1]
(b)	(i)	anoic acid, CH_3COOH , is a weak acid with a K_a value of 1.70×10^{-5} mol dm ⁻³ . Write an equation for the dissociation of ethanoic acid. [1] The concentration of ethanoic acid in a solution X was 2.74×10^{-3} mol dm ⁻³ .
(b)	(i)	anoic acid, CH_3COOH , is a weak acid with a K_a value of 1.70×10^{-5} mol dm ⁻³ . Write an equation for the dissociation of ethanoic acid. [1] The concentration of ethanoic acid in a solution X was 2.74×10^{-3} mol dm ⁻³ .
(b)	(i)	anoic acid, CH_3COOH , is a weak acid with a K_a value of 1.70×10^{-5} mol dm ⁻³ . Write an equation for the dissociation of ethanoic acid. [1] The concentration of ethanoic acid in a solution X was 2.74×10^{-3} mol dm ⁻³ .
(b)	(i)	anoic acid, CH_3COOH , is a weak acid with a K_a value of 1.70×10^{-5} mol dm ⁻³ . Write an equation for the dissociation of ethanoic acid. [1] The concentration of ethanoic acid in a solution X was 2.74×10^{-3} mol dm ⁻³ .

pH =[3]

(iii) When ethanoic acid is mixed with hydroiodic acid, an acid-base reaction takes place.

	Complete the acid-base equilibrium that is set up and identify the acid-base pairs.
•	label one conjugate acid-base pair as acid 1 and base 1,
•	label the other conjugate acid-base pair as acid 2 and base 2.
	+ = +
••••••	
•••••	[2]
(c) Me	ethanoic acid, HCOOH, is an ant's main defence mechanism, squirted at potential intruders d injected in 'ant bites'.
(i)	The recommended treatment for an ant bite is 'bicarbonate of soda', which contains ${\rm NaHCO_3}.$
	Suggest, with an equation, how NaHCO ₃ helps to relieve the effect of an ant bite.
	[2]
(ii)	Wasp stings are treated with vinegar. What does this suggest about the nature of the active ingredient in a wasp sting? Explain your answer.
	[2]
(iii)	Methanoic acid can be used in buffer solutions.
	Calculate the pH of a buffer solution containing equal volumes of 0.75 mol dm $^{-3}$ methanoic acid and 1.92 mol dm $^{-3}$ sodium methanoate.
	For HCOOH, $K_a = 1.60 \times 10^{-4} \text{ mol dm}^{-3}$.

pH =[2]

[Total: 16]

Turn over

(b) In this question, one mark is available for the quality of use and organisation of scientific terms.

This question considers different graphs used in chemistry.

- Explain how the shapes of rate-concentration graphs can be used to deduce the orders with respect to reactants.
- Explain how acid—base titration pH curves can be used to suggest suitable indicators for titrations of strong and weak acids with strong bases.

In your answer, include sketch graphs with labelled axes.
[5]