ADVANCED GCE CHEMISTRY Trends and Patterns 2815/01 Candidates answer on the Question Paper A calculator may be used for this paper #### **OCR Supplied Materials:** • Data Sheet for Chemistry (inserted) #### Other Materials Required: Scientific calculator Wednesday 27 January 2010 Morning Duration: 1 hour | Candidate | Candidate | |---------------|------------------| | Forename | Surname | | Centre Number | Candidate Number | | | Canadate Number | #### **INSTRUCTIONS TO CANDIDATES** - Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above. - Use black ink. Pencil may be used for graphs and diagrams only. - Read each question carefully and make sure that you know what you have to do before starting your answer. - Answer all the questions. - Do **not** write in the bar codes. - Write your answer to each question in the space provided, however additional paper may be used if necessary. #### INFORMATION FOR CANDIDATES - The number of marks is given in brackets [] at the end of each question or part question. - The total number of marks for this paper is 45. - You will be awarded marks for the quality of written communication where this is indicated in the question. - You may use a scientific calculator. - A copy of the Data Sheet for Chemistry is provided as an insert with this question paper. - You are advised to show all the steps in any calculations. - This document consists of 12 pages. Any blank pages are indicated. | | | - | |-------|----|---| | 1 | | | | 2 | | | | 3 | | | | 4 | Total | 25 | | Examiner's Use Only: 2 Answer all the questions. 1 The lattice enthalpy of caesium chloride, CsCl, can be calculated using a Born–Haber cycle. The table below shows the enthalpy changes and corresponding data for this cycle. | enthalpy change | label | energy/kJ mol ⁻¹ | |--------------------------------------|-------|-----------------------------| | lattice enthalpy of caesium chloride | Α | ? | | 1st electron affinity of chlorine | В | -349 | | 1st ionisation energy of caesium | С | +376 | | atomisation of chlorine | D | +122 | | formation of caesium chloride | E | -443 | | atomisation of caesium | F | +76 | (a) On the cycle below, put the letter for each enthalpy change in the appropriate box. (b) Use the Born-Haber cycle to calculate the lattice enthalpy of caesium chloride. | (c) | answer = | |-----|----------| | | | | | | | | | [Total: 8] | 3 | Aqueous hydrogen peroxide, H ₂ O ₂ , is used to sterilise contact lenses. H ₂ O ₂ decomposes to make | |---|--| | | oxygen and water, as shown in the equation below. | $$2H_2O_2(aq) \longrightarrow 2H_2O(I) + O_2(g)$$ | | -1.2-2(4,4,7) | |-----|---| | (a) | Decomposition of hydrogen peroxide is a redox reaction. | | | Using oxidation numbers, show that oxidation and reduction take place. | | | | | | | | | [2] | | (b) | The concentration of an aqueous solution of hydrogen peroxide can be determined by titration. Aqueous potassium manganate(VII), $KMnO_4$, is titrated against a solution of hydrogen peroxide in the presence of acid. | | | The half-equation for the oxidation of $\rm H_2O_2$ is as follows. | | | $H_2O_2(aq) \longrightarrow 2H^+(aq) + O_2(g) + 2e^-$ | | | The half-equation for the reduction of acidified MnO ₄ ⁻ is as follows. | | | $MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O(I)$ | | | (i) Construct the equation for the reaction between H ₂ O ₂ , MnO ₄ ⁻ ions and H ⁺ ions. | | | | | | | | | [2] | | (ii) A stade it followed the procedure pero | (ii) | (| ii' |) A student | followed | the | procedure | belov | ٧: | |---|------|---|-----|-------------|----------|-----|-----------|-------|----| |---|------|---|-----|-------------|----------|-----|-----------|-------|----| - Pipette 25.0 cm³ of aqueous hydrogen peroxide into a conical flask; - Add sulphuric acid to acidify the hydrogen peroxide; - Titrate this sample against a solution containing 0.0150 mol dm⁻³ MnO₄⁻(aq) ions. $23.35\,\mathrm{cm^3}$ of the solution containing $\mathrm{MnO_4}^-\!(\mathrm{aq})$ ions is required. $2\,\mathrm{mol}\;\mathrm{MnO_4}^-$ reacts with $5\,\mathrm{mol}\,\mathrm{H_2O_2}.$ Calculate the concentration, in $\mbox{mol}\,\mbox{dm}^{-3}$, of the aqueous hydrogen peroxide. | | concentration = mol dm ⁻³ [3] | |---------------|--| | (c) A | Acidified hydrogen peroxide oxidises Fe ²⁺ (aq) to Fe ³⁺ (aq). | | D | Describe a simple chemical test to show the presence of Fe ³⁺ (aq). | | n | ame of reagent used | | ol | bservation | | | [2] | | | [Total: 9] | © OCR 2010 | OOF | spen is an example of a transition element. | |-----|---| | (a) | Complete the electronic configuration for a copper(II) ion, Cu ²⁺ , and use it to explain why copper is a transition element. | | | Cu ²⁺ : 1s ² 2s ² 2p ⁶ | | | explanation | | | | | | [2] | | (b) | In this question, one mark is available for the quality of spelling, punctuation and grammar. | | | Transition elements form complex ions. | | | Explain what is meant by the terms complex ion and ligand. | | | Using complex ions of copper, give two examples of ligand substitution reactions that are
accompanied by a colour change. Include equations in your answer. | | | Describe, using suitable examples and 3-D diagrams, two different shapes of complex
ions. | [12] | |--------------------------------------| | Quality of Written Communication [1] | | [Total: 15] | ### **END OF QUESTION PAPER** ## Answer all the questions. | Trar | nsition metal compounds commonly underg | go ligand substitution reactions. | | |------|--|---|-----| | (a) | What is meant by the term ligand substitu | ition? | | | | | | | | | | | | | | | | [2] | | (b) | The following equilibrium is readily establi | shed. | | | | $[Co(H_2O)_6]^{2+} + 4Cl^{-}$ | \rightleftharpoons [CoC l_4] ²⁻ + 6H ₂ O | | | | In the boxes below, draw the 3-D shape or | f each complex ion. | [Co(H ₂ O) ₆] ²⁺ | [CoC l ₄] ²⁻ | | 1 | (c) | Cobalt also forms complex ions with an oxidation state of +3. The following standard electrode | |-----|--| | | potentials refer to cobalt(III) complexes. | $$[\text{Co}(\text{H}_2\text{O})_6]^{3+} + \text{e}^- \iff [\text{Co}(\text{H}_2\text{O})_6]^{2+}$$ $E^{\Theta} = +1.82\text{V}$ $[\text{Co}(\text{NH}_3)_6]^{3+} + \text{e}^- \iff [\text{Co}(\text{NH}_3)_6]^{2+}$ $E^{\Theta} = +0.11\text{V}$ (i) Which of the four complexes above is the strongest reducing agent? | | Explain your answer. | |------|--| | | | | | | | | | | | | | | [3] | | (ii) | Suggest why the cobalt(III) oxidation state is more stable in ammonia than in water. | | | | | | F-41 | (d) Vanadium has several oxidation states in its aqueous ions. | Complete the ta | ble below. | | | | |-----------------------------|-----------------------|-----------------------|----------------------|----------------------| | | VO ₂ +(aq) | VO ²⁺ (aq) | V ³⁺ (aq) | V ²⁺ (aq) | | oxidation state of vanadium | | | +3 | +2 | | coloyr | yellow | | green | | | | | | | [4] | [Total: 12] 2 A sample of impure copper was analysed to find its percentage by mass of copper. A solution was prepared by dissolving a sample of 8.95 g of the impure metal in dilute nitric acid to give 250 cm³ of solution. The impurities did not dissolve and were filtered from the solution. The copper was all converted into Cu²⁺. An excess of potassium iodide, KI(aq), was added to 25.0 cm³ of this solution. lodine formed: $$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_{2}(aq)$$ The iodine produced was titrated with 0.500 mol dm⁻³ sodium thiosulphate. $$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$ Starch was added near the end-point to make the colour change easier to observe. The average titre obtained was 23.50 cm³ of the thiosulphate solution. | (a) | (i) | State the oxidation number of sulphur in S ₂ O ₃ ²⁻ . | | |-----|------|---|-------| | | | | . [1] | | | (ii) | Calculate the amount, in moles, of S ₂ O ₃ ²⁻ ions in the average titre. | | | | | | | | | | | | (iii) Calculate the percentage, by mass, of copper present in the sample of the impure copper. Give your answer to three significant figures. | 3 | (a) | The standard electrod | de potentials for two | redox sys | tems are | shown b | oelow. | |---|-----|-----------------------|-----------------------|-----------|----------|---------|--------| |---|-----|-----------------------|-----------------------|-----------|----------|---------|--------| $$Br_2(aq) + 2e^- \iff 2Br^-(aq)$$ $E^{\theta} = +1.09V$ $Co^{2+}(aq) + 2e^- \iff Co(s)$ $E^{\theta} = -0.28V$ (i) Draw a labelled diagram of the standard cell formed using half-cells based on the two redox systems above. | | | [5] | |------|---|-----| | (ii) | Calculate the standard cell potential, E^{\bullet} , for this cell. | | | | | [1] | | iii) | Write an equation for the overall cell reaction. | | | | | [1] | | iv) | Identify the redox system in which reduction occurs. Explain your answer. | | | | redox system | | | | explanation | | | | | | | | | | | | | [2] | **(b)** An environmental chemist investigated the chloride ion concentration in a sample of water. She decided to convert the chloride ions into chlorine. The standard electrode potentials of three redox systems are given below. Suggest with reasons, whether acidified manganate(VII) and/or acidified dichromate(VI) would be suitable to convert chloride ions into chlorine. | | [2] | |---------------------|-----| | | | | | | | | | | reason | | | suitable reagent(s) | | [Total: 11] © OCR 2010 Turn over | In this question, one mark is available for the quality of spelling, punctuation and grammar. This question relates to the chemistry of chromium. 4.000g of hydrated chromium(III) chloride, CrCl ₃ ·xH ₂ O, is reacted to remove all of its water of crystallisation. After removal of the water of crystallisation, the residue weighed 2.380 g. An aqueous solution of CrCl ₃ ·xH ₂ O contains the complex ion [Cr(H ₂ O) ₄ Cl ₂] ⁺ which shows stereoisomerism. When an aqueous solution of chromium(III) chloride is reacted with aqueous sodium hydroxide, followed by hydrogen peroxide, a solution containing chromate(VI) ions is formed. • Calculate the value of x in the formula CrCl ₃ ·xH ₂ O. • Using 3-D diagrams, describe the stereoisomerism in [Cr(H ₂ O) ₄ Cl ₂] ⁺ . • Outline flow phramate(VI) fons can be converted the dichromate(VI) ions/Using a balanced solution, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in aqueous solution. State clearly any observations associated with this Equilibrium. | | 8 | |--|---|--| | 4.000 g of hydrated chromium(III) chloride, CrCl₃.xH₂O, is reacted to remove all of its water of crystallisation. After removal of the water of crystallisation, the residue weighed 2.380 g. An aqueous solution of CrCl₃.xH₂O contains the complex ion [Cr(H₂O)₄Cl₂]⁺ which shows stereoisomerism. When an aqueous solution of chromium(III) chloride is reacted with aqueous sodium hydroxide, followed by hydrogen peroxide, a solution containing chromate(VI) ions is formed. Calculate the value of x in the formula CrCl₃.xH₂O. Using 3-D diagrams, describe the stereoisomerism in [Cr(H₂O)₄Cl₂]⁺. Outline how chromate(VI) ions can be converted into dichromate(VI) ions? Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in | ļ | In this question, one mark is available for the quality of spelling, punctuation and grammar. | | After removal of the water of crystallisation, the residue weighed 2.380 g. An aqueous solution of $CrCl_3.xH_2O$ contains the complex ion $[Cr(H_2O)_4Cl_2]^+$ which shows stereoisomerism. When an aqueous solution of chromium(III) chloride is reacted with aqueous sodium hydroxide, followed by hydrogen peroxide, a solution containing chromate(VI) ions is formed. • Calculate the value of x in the formula $CrCl_3.xH_2O$. • Using 3-D diagrams, describe the stereoisomerism in $[Cr(H_2O)_4Cl_2]^+$. • Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in | | This question relates to the chemistry of chromium. | | An aqueous solution of CrCl ₃ .xH ₂ O contains the complex ion [Cr(H ₂ O) ₄ Cl ₂] ⁺ which shows stereoisomerism. When an aqueous solution of chromium(III) chloride is reacted with aqueous sodium hydroxide, followed by hydrogen peroxide, a solution containing chromate(VI) ions is formed. • Calculate the value of x in the formula CrCl ₃ .xH ₂ O. • Using 3-D diagrams, describe the stereoisomerism in [Cr(H ₂ O) ₄ Cl ₂] ⁺ . • Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in | | 4.000 g of hydrated chromium(III) chloride, $CrCl_3.xH_2O$, is reacted to remove all of its water of crystallisation. | | stereoisomerism. When an aqueous solution of chromium(III) chloride is reacted with aqueous sodium hydroxide, followed by hydrogen peroxide, a solution containing chromate(VI) ions is formed. Calculate the value of x in the formula CrCl₃.xH₂O. Using 3-D diagrams, describe the stereoisomerism in [Cr(H₂O)₄Cl₂]⁺. Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(XI) ions in | | After removal of the water of crystallisation, the residue weighed 2.380 g. | | Calculate the value of x in the formula CrCl₃.xH₂O. Using 3-D diagrams, describe the stereoisomerism in [Cr(H₂O)₄Cl₂]⁺. Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in | | An aqueous solution of ${\rm CrC}l_3.{\it x}{\rm H_2O}$ contains the complex ion $[{\rm Cr(H_2O)_4C}l_2]^+$ which shows stereoisomerism. | | Using 3-D diagrams, describe the stereoisomerism in [Cr(H₂O)₄Cl₂]⁺. Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in | | When an aqueous solution of chromium(III) chloride is reacted with aqueous sodium hydroxide, followed by hydrogen peroxide, a solution containing chromate(VI) ions is formed. | | Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(XI) ions in | | • Calculate the value of \boldsymbol{x} in the formula $CrCl_3$. $\boldsymbol{x}H_2O$. | | Outline how chromate(VI) ions can be converted into dichromate(VI) ions Tusing a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in aqueous solution. State clearly any observations associated with this equilibrium. | | Using 3-D diagrams, describe the stereoisomerism in [Cr(H₂O)₄Cl₂]⁺. | | | | Outline how chromate(VI) ions can be converted into dichromate(VI) ions/Using a balanced equation, show the equilibrium that exists between chromate(VI) and dichromate(VI) ions in aqueous solution. State clearly any observations associated with this equilibrium. | ### Answer all the questions. 1 In the UK, almost all sulphuric acid, H₂SO₄, is manufactured by the Contact process. One stage in the Contact process involves the reaction between sulphur dioxide and oxygen. $$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$ The table below shows values of $K_{\rm p}$ for this equilibrium at different temperatures. | / | temperature /°C | $K_{\rm p}$ / kPa ⁻¹ | |---|-----------------|---------------------------------| | | 25 | 4.0 × 10 ²² | | | 200 | 2.5 × 10 ⁸ | | | 800 | 1.3 × 10 ⁻³ | (i) Write the expression for the equilibrium constant, K, for this equilibrium. (ii) What does this value of K_p suggest about the position of equilibrium at 25°C and the relative equilibrium proportions of the reactants and products? [2] [1] (b) Predict how the equilibrium position of this equilibrium is affected by the following changes. Explain your answers. (i) The temperature is increased whilst keeping the pressure constant. | | (ii) | The pressure is increased whilst keeping the temperature constant. | |-----|------|--| | | | effect on equilibrium position | | | | [1] | | | | effect on partial pressure of SO ₃ (g) | | | | [1] | | (c) | An | equilibrium is set up for the SO ₂ , O ₂ , SO ₃ system at 400 °C. | | | Att | his temperature, | | | • | the equilibrium partial pressure of SO ₂ is 25 kPa; | | | • | the equilibrium partial pressure of O ₂ is 125 kPa; | | | • | $K_{\rm p} = 3.0 \times 10^2 \mathrm{kPa}^{-1}$. | | | Cal | culate the equilibrium partial pressure of 80 ₃ at 400 °C. | | | Her | nce determine the molar percentage of SO ₃ in the equilibrium mixture at 400 °C. | | | | | | | / | | | | | | | | | | | | | | | | | answer = % [3] | | (d) | SO | ne UK, almost all the sulphuric acid manufactured uses sulphur as a starting material for $_2$ production. In some countries, metal ores such as zinc sulphide, ZnS, are used instead ulphur to form ${\rm SO}_2$ by heating in air. | | | (i) | Construct a balanced equation to show the reaction that takes place when zinc sulphide is heated in air. | | | | [2] | | | (ii) | Suggest why countries may find it more economic to manufacture sulphuric acid from zinc sulphide instead of from sulphur. | | | | | | | | [1] | | | | [Total: 13] | © OCR 2010 Turn over | iorn | gest a bal
n aqueous | anced equation for | | | (aq), forming iodine,
aq), I ⁻ (aq) and H ⁺ (a | |--------------------|--------------------------------------|---|--|--|---| | | | | | | | | I [–] (a) | ee experir
aq) and H ⁺ | nents were carrie
(aq). The initial rate | ed out using difference of I ₂ | erent initial conce
was measured for | entrations of $\rm H_2O_2$ reach experiment. | | The | experime | ntal results are sho | wn below. | | | | expe | riment | [H ₂ O ₂ (aq)]
/mol dm ⁻³ | [I ⁻ (aq)]
/mol dm ⁻³ | [H ⁺ (aq)]
/mol dm ⁻³ | rate
/mol dm ⁻³ s ⁻¹ | | | 1 | 0.050 | 0.010 | 0.005 | 5.75×10^{-6} | | | 2 | 0.050 | 0.020 | 0.005 | 1.15 × 10 ⁻⁵ | | | 3 | 0.050 | 0.040 | 0.010 | 2.30×10^{-5} | | | | | | | | | | | | | | | | (ii) | This reac | tion is first order wi | th respect to H ₂ O ₂ | 2. | | | | Use this i | nformation and you | ır answers to (i) to | write the rate equ | ation for this reaction | | | | | | | | | | | Ala a | k for this reaction | . State the units fo | * 1c | | (c) | Нус | drogen peroxide readily decomposes to give water and oxygen. | |-----|------------|--| | | Hyc
use | drogen peroxide is sold by volume strength. For example, 40 volume hydrogen peroxide is d to bleach hair, fur and bones. | | | 40 y | volume $\rm H_2O_2$ produces 40 volumes of oxygen gas, measured at room temperature and ssure, r.t.p., for each volume of aqueous $\rm H_2O_2$ solution. | | | (i) | Construct an equation for the decomposition of hydrogen peroxide. | | | | [1] | | | (ii) | Determine the concentration, in mol dm ⁻³ , of 40 volume hydrogen peroxide. | | | | 1 mol of O ₂ (g) occupies 24.0 dm ³ at r.t.p. | | | | Show all your working clearly. | answer = $mol dm^{-3}$ [3] [Total: 14] © OCR 2010 | | o qu | estion looks at several acids. | |-----|------------|---| | (a) | Hye
the | droiodic acid, HI(aq), is a strong acid that is an aqueous solution of hydrogen iodide gas. In laboratory, hydroiodic acid is prepared by the method below. | | | gas | mixture of iodine and water is put into a flask. The mixture is stirred and hydrogen sulphide s , $H_2S(g)$, is bubbled through the mixture for several hours. The mixture becomes yellow as phur separates out. | | | The | e sulphur is filtered off and the solution is purified by fractional distillation. | | | A 2 | 225 cm ³ sample of hydroiodic acid is collected containing 47.2g of HI. | | | (i) | Construct a balanced equation, with state symbols, for the preparation of hydroiodic acid from iodine and hydrogen sulphide. | | | | [2] | | | (ii) | Calculate the pH of the hydroiodic acid sample that is collected. | 4. | | pH =[2] | | (b) | Eth | anoic acid, CH ₃ COOH, is a weak acid with a $K_{\rm a}$ value of 1.70 \times 10 ⁻⁵ mol dm ⁻³ . | | (b) | Eth | | | (b) | | anoic acid, CH ₃ COOH, is a weak acid with a $K_{\rm a}$ value of 1.70 \times 10 ⁻⁵ mol dm ⁻³ . | | (b) | | anoic acid, CH ₃ COOH, is a weak acid with a K_a value of 1.70 × 10 ⁻⁵ mol dm ⁻³ . Write an equation for the dissociation of ethanoic acid. | | (b) | (i) | anoic acid, CH_3COOH , is a weak acid with a K_a value of 1.70×10^{-5} mol dm ⁻³ . Write an equation for the dissociation of ethanoic acid. [1] | | (b) | (i) | anoic acid, CH_3COOH , is a weak acid with a K_a value of 1.70×10^{-5} mol dm ⁻³ . Write an equation for the dissociation of ethanoic acid. [1] The concentration of ethanoic acid in a solution X was 2.74×10^{-3} mol dm ⁻³ . | | (b) | (i) | anoic acid, CH_3COOH , is a weak acid with a K_a value of 1.70×10^{-5} mol dm ⁻³ . Write an equation for the dissociation of ethanoic acid. [1] The concentration of ethanoic acid in a solution X was 2.74×10^{-3} mol dm ⁻³ . | | (b) | (i) | anoic acid, CH_3COOH , is a weak acid with a K_a value of 1.70×10^{-5} mol dm ⁻³ . Write an equation for the dissociation of ethanoic acid. [1] The concentration of ethanoic acid in a solution X was 2.74×10^{-3} mol dm ⁻³ . | | (b) | (i) | anoic acid, CH_3COOH , is a weak acid with a K_a value of 1.70×10^{-5} mol dm ⁻³ . Write an equation for the dissociation of ethanoic acid. [1] The concentration of ethanoic acid in a solution X was 2.74×10^{-3} mol dm ⁻³ . | pH =[3] (iii) When ethanoic acid is mixed with hydroiodic acid, an acid-base reaction takes place. | | Complete the acid-base equilibrium that is set up and identify the acid-base pairs. | |--------|---| | • | label one conjugate acid-base pair as acid 1 and base 1, | | • | label the other conjugate acid-base pair as acid 2 and base 2. | | | + = + | | •••••• | | | ••••• | [2] | | (c) Me | ethanoic acid, HCOOH, is an ant's main defence mechanism, squirted at potential intruders
d injected in 'ant bites'. | | (i) | The recommended treatment for an ant bite is 'bicarbonate of soda', which contains ${\rm NaHCO_3}.$ | | | Suggest, with an equation, how NaHCO ₃ helps to relieve the effect of an ant bite. | | | | | | | | | [2] | | (ii) | Wasp stings are treated with vinegar. What does this suggest about the nature of the active ingredient in a wasp sting? Explain your answer. | | | | | | | | | [2] | | (iii) | Methanoic acid can be used in buffer solutions. | | | Calculate the pH of a buffer solution containing equal volumes of 0.75 mol dm $^{-3}$ methanoic acid and 1.92 mol dm $^{-3}$ sodium methanoate. | | | For HCOOH, $K_a = 1.60 \times 10^{-4} \text{ mol dm}^{-3}$. | | | | pH =[2] [Total: 16] Turn over (b) In this question, one mark is available for the quality of use and organisation of scientific terms. This question considers different graphs used in chemistry. - Explain how the shapes of rate-concentration graphs can be used to deduce the orders with respect to reactants. - Explain how acid—base titration pH curves can be used to suggest suitable indicators for titrations of strong and weak acids with strong bases. | In your answer, include sketch graphs with labelled axes. | |---| [5] |