

ADVANCED GCE CHEMISTRY

2815/01

Trends and Patterns

Candidates answer on the question paper

OCR Supplied Materials:

Data Sheet for Chemistry (inserted)

Other Materials Required:

Scientific calculator

Thursday 18 June 2009 Morning

Duration: 1 hour

Candidate	Candidate
Forename	Surname
Centre Number	Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided, however additional paper may be used if necessary.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 45.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- A copy of the Data Sheet for Chemistry is provided as an insert with this
 question paper.
- You are advised to show all the steps in any calculations.
- This document consists of 12 pages. Any blank pages are indicated.

FOR EXAMINER'S USE							
Qu. Max. Mark							
1	10						
2	9						
3	14						
4	12						
TOTAL	45						

Answer all the questions.

- 1 The lattice enthalpy of an ionic compound can be determined using a Born-Haber cycle.
 - (a) Complete the following table which shows some of the enthalpy changes needed to calculate the lattice enthalpy of barium oxide.

name of enthalpy change	process
	Ba(s) → Ba(g)
first ionisation energy of barium	
	$O^-(g) + e^- \rightarrow O^{2-}(g)$
enthalpy change of formation of barium oxide .	

		[4]
(b)	Suggest why the lattice enthalpy of an ionic solid cannot be measured directly.	
		[1]
(c)	The lattice enthalpy of barium oxide is more exothermic than that of barium carbonate.	
	Explain why.	
		•••••
		•••••
		[2]

3

(b) Aqueous iron(II) ions, ${\rm Fe^{2+}}$, can be oxidised by hydrogen peroxide, ${\rm H_2O_2}$, under acidic conditions.

The reduction half-equation is as follows.

$$\mathrm{H_2O_2(aq)} + 2\mathrm{H^+(aq)} + 2\mathrm{e^-} \longrightarrow 2\mathrm{H_2O(l)}$$

	Construct the equation for the oxidation of $Fe^{2+}(aq)$ to $Fe^{3+}(aq)$ by hydrogen peroxide under acidic conditions.
	[2]
(c)	Describe, with the aid of an ionic equation, how aqueous sodium hydroxide can be used to confirm the presence of ${\rm Fe^{3+}}({\rm aq})$ ions.
	F03

2	The following reactions involve the dichromate(VI) ion,	Cr ₂ O ₇ ²⁻ .
---	---	--

equation 2.1
$$Cr_2O_7^{2-} + 2OH^- \rightleftharpoons 2CrO_4^{2-} + H_2O$$

equation 2.2 $Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+}$

(a)	(i)	What colour change occurs when the equilibrium position in equation 2.1 shifts from to right?	n left
		from to	[1]

(ii) What could be added to the equilibrium mixture in **equation 2.1** to make the position of equilibrium shift from right to left?

(iii) Show, using oxidation numbers, that the forward reaction in equation 2.1 is not a redox reaction.

......[1]

- (b) The reaction in equation 2.2 may be used to determine the purity of iron wire.
 - 1.20 g of iron wire were reacted with an excess of 2 mol dm⁻³ sulphuric acid.
 - The solution was transferred to a volumetric flask and the volume made up to 250 cm³.
 - 25.0 cm³ of this solution required 23.20 cm³ of 0.0150 mol dm⁻³ Cr₂O₇²⁻ solution to completely react.

Determine the % purity of the iron wire.

purity of iron wire = % [5]

[Total: 8]

© OCR 2009

3 Some standard electrode potentials are shown below.

	E⊕/V
$\frac{1}{2}Br_2 + e^- \Longrightarrow Br^-$	+1.07
$Cr_2O_7^{2-} + 14H^+ + 6e^- \Longrightarrow 2Cr^{3+} + 7H_2O$	+1.33
$\frac{1}{2}Cl_2 + e^- \rightleftharpoons Cl^-$	+1.36
$BrO_3^- + 6H^+ + 5e^- \Longrightarrow \frac{1}{2}Br_2 + 3H_2O$	+1.52

(a) (i) Define the term standard electrode potential.

State the conditions used to measure standard electrode potential.	[ح]
	[1]

(b) Complete the diagram to show how the standard electrode potential for the $\frac{1}{2}Cl_2 + e^- \rightleftharpoons Cl^-$ half-cell, could be measured.

(ii)

[3]

(c)	In acid solution, colourless BrO ₃ ⁻ ions oxidise Br ⁻ ions to Br ₂ .						
	(i)	Use the standard electrode potential data opposite to construct an equation for this reaction.					
		[2]					
	(ii)	Describe what you would see when $\mathrm{BrO_3}^-$ reacts with Br^- .					
		[1]					
(d)	Acio	dified $Cr_2O_7^{2-}$ ions will oxidise Br^- to Br_2 but will not oxidise Cl^- ions to Cl_2 . Explain why.					
	•••••						
	•••••						
	•••••						
		[1]					
		[Total: 10]					

- 4 (a) Titanium(IV) oxide, TiO₂, is used as a pigment in paint.
 - (i) What is the electron configuration of the Ti⁴⁺ ion in TiO₂?

102 202	Γ47
15 75	

(ii) What is the colour of TiO₂? Explain your answer using the electron configuration in (i).

•••••	•••••	•••••	•••••	•••••	 	•••••	•••••	
•••••	•••••	•••••		•••••	 	••••••		
					 			 [2]

(b) Monastral Blue is an example of a copper complex, in which the phthalocyanine ligand is complexed with a Cu²⁺ ion.

(i) What type of bonding exists between the Cu²⁺ ion and the phthalocyanine ligand?

(ii) The Cu ²⁺ ion h to the copper co	as the electron configu omplex being coloured	uration [Ar]3d ⁹ . Expla I.	ain why this configura	ation leads
				•••••
				•••••
	yt			[3]
(c) It is possible to prod	uce a visible spectrum tral Blue on the axes b	for Monastral Blue.	Sketch a diagram of	
spectrum for typings	and Blad on the dads b	iciow.		
↑ vi	olet	red		
	5.5.	/ 100		
	/			
			/	
absorbance				
4	500	600	700	

wavelength/nm

[1]

[Total: 8]

5 In this question, one mark is available for the quality of spelling, punctuation and grammar.

Transition metals and their ions form complexes which may show stereoisomerism.

- What is meant by stereoisomerism?
- Using suitable examples, describe with the aid of diagrams the different types of stereoisomerism shown by complex ions.
- Some transition metal complexes are used in medicine. Describe and explain one such use.

© OCR 2009

······································
[11]
Quality of Written Communication [1]
•

END OF QUESTION PAPER

[Total: 12]

- 2 Chlorine dioxide, ClO₂, is a liquid at room temperature and pressure. In an aqueous solution it is used as a bleach.
 - (a) In aqueous solution, chlorine dioxide, ${\rm ClO_2}$, reacts with hydroxide ions, ${\rm OH^-}$.

This reaction is carried out three times using different concentrations of the two reactants. The initial rate of each reaction is determined and the results are shown below.

experiment	[ClO ₂ (aq)] /mol dm ⁻³	[OH ⁻ (aq)] /mol dm ⁻³	initial rate /mol dm ⁻³ s ⁻¹
1	0.010	0.030	6.00 × 10 ⁻⁴
2	0.010	0.075	1.50×10^{-3}
3	0.030	0.030	5.40 × 10 ⁻³

For each reactant, deduce the order of reaction. Show your reasoning.
OH ⁻ (aq)
ClO ₂ (aq)
[4]

	(ii)	Deduce the rate equation for the reaction.
		[1]
	(iii)	Calculate the rate constant, k , for this reaction. State the units, if any. Give your answer to an appropriate number of significant figures.
		rate constant, k: units:
(b)	The	mechanism for this reaction takes place in several steps.
	In t	he overall equation, 2 mol ${\rm CIO}_2$ reacts with 2 mol ${\rm OH}^-$ to form an aqueous solution taining chlorate(III) ions and chlorate(V) ions.
	Chle	prate(III) ions have the formula ClO_2^- .
	(i)	How does the rate equation provide evidence that the reaction takes place by more than one step?
		[1]
	(ii)	Suggest the overall equation.
		[2]
		[Total: 11]

3	Den	izoic acid, C ₆ n ₅ COOn, is a weak acid, used for preserving fruit juices.	
	The	acid dissociation constant, $K_{\rm a}$, of benzoic acid is 6.30×10^{-5} mol dm ⁻³ at 25 °C.	
	(a)	Write the equation for the dissociation of benzoic acid when dissolved in water.	
			[1]
	(b)	Write the expression for the acid dissociation constant, $K_{\rm a}$, of benzoic acid.	
	(c)	The solubility of benzoic acid in water is 3.40 g dm ⁻³ at 25°C.	[1]
		Calculate the pH of a saturated solution of benzoic acid in water at 25°C.	

[5]

(d) In this question, one mark is available for the quality of use and organisation of scientific terms.

A buffer solution is needed for preserving fruit juice.

A chemist at the fruit juice company prepared a benzoic acid/sodium benzoate buffer with concentrations of 0.105 mol $\rm dm^{-3}~C_6H_5COOH$ and 0.125 mol $\rm dm^{-3}~C_6H_5COONa$.

• State what a buffer solution is and explain how this solution acts as a buffer solution. Include equations in your answer.

Calculate the pH of this benzoic acid/sodium benzoate buffer at 25 °C. Show all yow working.	our
	••••
	••••
	••••
	••••
	••••
	••••
	••••

	••••
	••••
	••••
	••••
	••••
	เลา

Quality of Written Communication [1]

[Total: 16] Turn over

- 4 Nitric acid, HNO₃, is a strong acid which can also behave as an oxidising agent.
 - (a) Nitric acid reacts with bases, such as aqueous ammonia, $\mathrm{NH}_3(\mathrm{aq})$, to form salts.

A 25.0 ${\rm cm^3\,sample}$ of ${\rm HNO_3(aq)}$ was placed in a conical flask.

 $\rm NH_3(aq)$ was added from a burette until the pH showed little further change. The $\rm NH_3$ concentration was the same as the $\rm HNO_3$ concentration.

The pH curve for this titration is shown below.

(i) Deduce the concentration of the nitric acid.

		[1]
(ii)	How can you tell from this pH curve that aqueous ammonia is a weak base?	
		•••••
		[1]
(iii)	What is the formula for the salt formed in this reaction?	
		[1]

(iv) The pH ranges for four indicators are shown below.

(b)

indicator	pH range
malachite green	0.2–1.8
resazurin	3.8-6.4
metacresol purple	7.4–9.0
alizarin yellow R	10.1–12.0

	which of these four indicators is most suitable for this titration?
	[1]
(v)	The titration was repeated but using $\mathrm{NH}_3(\mathrm{aq})$ with twice the concentration of the original ammonia solution.
	What two differences would there be between this titration curve and the one shown in part (a) ?
	[2]
Whe	en nitric acid reacts with magnesium metal, different gases are formed, depending on the centration of the nitric acid. Each reaction producing a gas is a redox reaction.
•	With very dilute nitric acid, $\rm H_2$ gas is evolved. With concentrated nitric acid, $\rm NO_2$ gas is evolved.
(i)	Write a full equation and an ionic equation for the reaction of magnesium with very dilute nitric acid.
	full equation
	ionic equation[2]
(ii)	Use oxidation numbers to show the reduction that takes place when magnesium reacts with dilute and with concentrated nitric acid.
	dilute HNO ₃
	concentrated HNO ₃ [2]
	[Total: 10]

© OCR 2009