1B Equilibrium

The equilibrium constant, K_c

Characteristics of the equilibrium state

- 1) Equilibrium can only be established in a **closed system**. Matter cannot be exchanged with the surroundings (this will affect the position of the equilibrium), but energy can be exchanged.
- 2) Equilibrium can be approached from **either direction**. The products can be used as the reactants to set up the equilibrium reversible reactions.
- 3) Equilibrium is a **dynamic state** At equilibrium the rate in both directions **must** be the same.
- 4) Dynamic equilibrium is stable under fixed conditions but is sensitive to changes in temperature, pH, pressure.
- In AS we discovered that Le Chatelier's Principle was given as a way of determining how
 changes in the conditions can affect the extent to which a reaction will go.
- A more Quantitative approach is needed to understand more fully the ideas of equilibria

The equilibrium law:

• The equilibrium law is an expression of the amounts of **products**: **reactants** in an equilibrium.

Consider the reaction:

$$aA + bB \stackrel{\longleftarrow}{\rightarrow} cC + dD$$

- Where [A], [B], [C] and [D] are the equilibrium concentrations of reactants and products
- The indices **a,b,c** and **d** are the stoichiometric numbers in the balanced chemical reaction

$$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

- This expression gives us a mathematical way of looking at the proportions of products and reactants in an equilibrium.
- At equilibrium these relative proportions will not change.
- This means a constant is produced, this is given by K_c

Approaching equilibrium

Initially:

• Consider the reversible reaction:

As the reaction proceeds:

At equilibrium:

$$N_2O_{4(q)} \qquad \stackrel{\longleftarrow}{\longrightarrow} \qquad 2NO_{2(q)}$$

• N₂O₄ is a colourless gas, NO₂ is a brown gas.

• N₂O₄ molecules decompose into 2 NO₂ molecules, the rate of the forward reaction is fast.

• Because there are very few molecules of NO₂, the reverse reaction can only happen slowly.

 There are now fewer N₂O₄ molecules available to decompose, the rate of the forward reaction decreases.

- decreases.
 There are now more NO₂ molecules present so the rate of the reverse reaction increases.
- Eventually the forward reaction takes place at exactly the same rate as the reverse reaction.
- The concentrations of reactants and products now remain constant.
- Graph shows how the concentrations of reactants and products change:

Writing expressions for K_c:

• At equilibrium the concentrations of NO₂ and N₂O₄ are constant:

$$N_2O_{4(g)} \qquad \Longrightarrow \qquad 2NO_{2(g)}$$

$$K_c = \frac{[NO_2]^2}{[N_2O_4]}$$

• A few other examples:

$$K_{c} = \frac{[SO_{2(g)} + O_{2(g)}}{[SO_{2}]^{2}}$$

$$H_{2(g)} + I_{2(g)} \stackrel{\longleftarrow}{\longrightarrow} 2HI_{(g)}$$

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$

Units of K_c

- These have to be worked out for each K_c .
- Just like the rate constant, put the units into each expression:

Calculations using K_c

- The equilibrium expression obviously allows you to calculate K_{c} if you know the concentrations at equilibrium.
- You can also calculate K_c and equilibrium concentrations knowing the starting concentrations and one of the equilibrium concentrations.

Determining K_c from equilibrium concentrations:

1) Hydrogen, Iodine, Hydrogen iodide equilibrium:

Reaction:
$$H_{2(g)} + I_{2(g)} \leftrightarrows 2HI_{(g)}$$

Equilibrium 0.140 0.040 0.320 concentrations:

• Write the equilibrium expression, put in the values, calculate K_c and work out the units:

2) N₂O₄ / NO₂ equilibrium: Given the number of moles at equilibrium in a volume of 2dm³.

Reaction:	$N_2O_{4(g)}$	\leftrightarrows	$2NO_{2(g)}$
Mole quantities at equilibrium:	0.400		3.20
Equilibrium concentrations:	0.400 / 2		3.20 / 2
Equilibrium concentrations:	0.20		1.60

- As the quantities are given in moles, you have to calculate the equilibrium concentrations
- Write the equilibrium expression, put in the values, calculate K_c and work out the units:

$$K_c = \frac{[NO_2]^2}{[N_2O_4]}$$
 $K_c = \frac{[NO_2]^2}{[N_2O_4]}$
 $K_c = \frac{mol dm^{-3} mol dm^{-3}}{mol dm^{-3}}$

$$K_c = 12.8 \quad \text{mol dm}^{-3}$$

$$K_c = mol dm^{-3}$$

Calculating the quantities and concentrations present at equilibrium:

- 3) Hydrogen, lodine, Hydrogen iodide equilibrium:
 - This time you are told the mole quantities at the start and one equilibrium quantity.
 - From this you can work out all of the mole quantities at equilibrium.
 - The final step is to convert to equilibrium concentrations, in this example the reaction is carried out in a **1 dm³** vessel.

Reaction:
$$H_{2(g)} + I_{2(g)} \stackrel{\longleftarrow}{\hookrightarrow} 2HI_{(g)}$$

Reacted: Equilibrium concentrations:

• Write the equilibrium expression, put in the values, calculate K_c and work out the units:

$$K_c = \frac{[HI]^2}{[H_2][I_2]}$$

$$\mathsf{K}_{\mathsf{c}} = \frac{\left[\mathsf{H}\mathsf{I}\right]^2}{\left[\mathsf{H}_2\right]\left[\mathsf{I}_2\right]}$$

$$K_c = \frac{(0.64)^2}{0.28 \times 0.08}$$

$$K_c = \frac{\text{mol dm}^{-3} \text{ mol dm}^{-3}}{\text{mol dm}^{-3} \text{ mol dm}^{-3}}$$

$$K_c = 18.3$$

$$K_c = \frac{\text{mol dm}^{-3} \cdot \text{mol dm}^{-3}}{\text{mol dm}^{-3} \cdot \text{mol dm}^{-3}}$$

$$K_c = No units$$

The equilibrium position and K_c

What is the significance of a K_c value?

• **K**_c is a mathematical representation of the ratio of **products**: **reactants**.

If the amount of products is equal to reactants then K_c = 1

Products favoured: $K_c > 1$

Reactants favoured: $K_c < 1$

How do changes in temperature affect K_c?

- In AS we used **Le Chatelier's Principle** to predict the how temperature affects the position of equilibrium.
- We can use this to predict what happens to K_c.
- Apply the direction movement to the formula to work out whether K_c increases or decreases:

1) Endothermic reactions:

- Applying LCP means that an increase in temperature will shift the equilibrium to the Products.
- This means there will be more Products and less Reactants:

- The top number increases and the bottom number decreases.
- This makes K_c a larger value.

K_c increases

and vice versa

2) Exothermic reactions:

- Applying LCP means that an increase in temperature will shift the equilibrium to the Reactants.
- This means there will be more Reactants and less Products:

- The top number decreases and the bottom number increases.
- This makes K_c a Ismaller value.

K_c decreases

and vice versa

The equilibrium constant, Kc, and the rate constant, k

How does a change in concentration and pressure affect K_c?

- In AS we used Le Chatelier's Principle to predict the how concentration and pressure affects the position of equilibrium.
- The reasons for these changes in the position of the equilibrium lie with K_c.

K_c is unaltered by changes in concentration and pressure

1) Changes in concentration:

A change in Concentration has no effect on the equilibrium constant.

• Remember if a reactant / product is added the equilibrium shifts to the opposite direction to keep the 'proportions' the same - **K**_c is unchanged:

- If the concentrations are doubled, the system is no longer at equilibrium, $K_c = 12.8$
- To bring K_c back from 6.4 to 12.8:
- The system must increase [NO₂] and decrease [N₂O₄]
- Remember if a reactant / product is added the equilibrium shifts to the opposite direction to keep the 'proportions' the same - K_c is unchanged:

2) Changes in Pressure:

A change in Pressure has no effect on the equilibrium constant.

• If **pressure** is **doubled** - the **volume** is **halved** - meaning that the **concentrations** will have **doubled**

Reaction:
$$N_2O_{4(g)} \stackrel{\longleftarrow}{\longrightarrow} 2NO_{2(g)}$$

$$[NO_2] = 1.60 \text{ Mol dm}^{-3}$$
 Double []: $[NO_2] = 3.20 \text{ Mol dm}^{-3}$ $[N_2O_4] = 0.20 \text{ Mol dm}^{-3}$ $[N_2O_4] = 0.40 \text{ Mol dm}^{-3}$

$$K_{c} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]}$$
 $K_{c} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]}$

$$K_c = (1.60)^2$$
 0.20
 $K_c = (3.20)^2$
 0.40

$$K_c = 12.8 \text{ Mol dm}^{-3} \qquad K_c = 25.6 \text{ Mol dm}^{-3}$$

- If the pressure is doubled, the system is no longer at equilibrium, $K_c = 12.8$
- To bring K_c back from 25.6 to 12.8:
- The system must increase [NO₂] and decrease [N₂O₄]
- Remember if a reactant / product is added the equilibrium shifts to the opposite direction to keep the 'proportions' the same - K_c is unchanged:

How does the presence of a catalyst affect K_c?

A catalyst has no effect on the equilibrium constant.

- A catalyst speeds up both the forward and reverse reaction.
- Equilibrium is achieved more quickly.

The equilibrium constant K_c, and the rate constant, k

- These 2 constants tell us the most important things in the chemical industry:
- a) Equilibrium How farb) Rates How fast

a) The equilibrium constant, K_c

• **K**_c indicates the position of the equilibrium:

Large K_c Products predominate
Small K_c Reactants predominate

Remember LCP:

Endothermic K_c increases with an increase in temperature (increases products)

K_c decreases with an increase in

Exothermic temperature (decreases products)

Kc can be written from the balanced chemical equation

b) The rate constant, k

k is a measure of the rate of a reaction:

Large k Fast rate
Small k Slow rate

Remember:

k increases with an increase in temperature - Rate increases with an increase in temperature k decreases with a decrease in temperature - Rate decreases with a decrease in temperature

k can only be determined experimentally from the rate equation

The importance of compromise:

• The 2 desirable outcomes are a) increasing rate and b) increasing the amount:

a) Increasing the rate:

Increasing temperature: Increases the rate of production of product - desirable

$$\Delta H = +92 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$$
 $N_2(g) + 3H_2(g)$ $2\mathrm{NH}_3(g)$ $\Delta H = -92 \,\mathrm{kJ}\,\mathrm{mc}$

Increasing temperature: Decreases the amount of product made - undesirable

b) Increasing the amount:

Decreasing the temperature: Increases the amount of product made - desirable

$$\Delta H = +92 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$$
 $N_2(g) + 3H_2(g)$ $\Delta H = -92 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$

Decreasing temperature: Decreases the rate of production of product - undesirable

The compromise is:

Moderate temperature: k increases moderately - Rate increases

by a moderate amount

Moderate temperature: K_c decreases by a moderate amount -

allowing a moderate yield