1C Acid and buffers

The road to acids

- The definition of acids and bases have changed over time.
- At AS we looked at the definition of acid base behaviour as defined by Bronsted Lowrey in 1923.
- They defined:

Acids - proton donors

Base - proton acceptors

Alkali - a base that dissolves in water forming OH ions

The role of H⁺ in reactions of acids

- A hydrogen ion is just a hydrogen atom that has lost an electron.
- As hydrogen only has 1 electron this means that a hydrogen ion is just a proton.
- H⁺ and **proton** mean the same.
- In water the acid dissociates producing hydrogen ions / protons:

$$HCI_{(g)}$$
 + aq \rightarrow $H^+_{(aq)}$ + $CI^-_{(aq)}$
 $H_2SO_{4(I)}$ + aq \rightarrow $H^+_{(aq)}$ + $HSO_4^-_{(aq)}$

Mono, di and tri - basic acids:

• Acids are categorised on the number of acidic hydrogen's / protons they can release:

Monobasic: releases 1 proton

$$HCI_{(aq)}$$
 + aq \rightarrow $H^+_{(aq)}$ + $CI^-_{(aq)}$

Dibasic: releases 2 protons

$$H_2SO_{4(aq)}$$
 + aq \rightarrow $H^+_{(aq)}$ + $HSO_4^-_{(aq)}$
 $HSO_4^-_{(aq)}$ + aq \leftarrow $H^+_{(aq)}$ + $O_4^{(aq)}$

Tribasic: releases 3 protons

$$H_3PO_{4(aq)}$$
 + aq $\stackrel{\longleftarrow}{\Longrightarrow}$ $H^+_{(aq)}$ + $\stackrel{H_2PO_4^-}{\cong}$
 $H_2PO_4^-_{(aq)}$ + aq $\stackrel{\longleftarrow}{\Longrightarrow}$ $H^+_{(aq)}$ + $\stackrel{HPO_4^{2^-}}{\cong}$
 $HPO_4^-_{(aq)}$ + aq $\stackrel{\longleftarrow}{\Longrightarrow}$ $H^+_{(aq)}$ + $\stackrel{PO_4^{3^-}}{\cong}$

Acid - base reactions:

Acids react with:

Carbonates

Bases (metal oxides)

Alkalis (metal hydroxides)

- In every reaction the acid is neutralised and water is formed as part of the reaction.
- Looking at the **ionic** equation we can see why water is formed in each case.
- This means we have to remove the **spectator ions**
- These are species that do not change from reactants to products (including the state symbols).
- It doesn't matter whether the acid is strong or weak as acids will release more H⁺ ions as they are used up in the reaction LCP

Carbonates:

Full:
$$2HCI_{(aq)} + CaCO_{3(s)} \rightarrow CaCI_{2(aq)} + CO2_{(g)} + H_2O_{(l)}$$

lons: $2H^+_{(aq)} + 2CI^-_{(aq)} + CaCO_{3(s)} \rightarrow Ca^{2+}_{(aq)} + 2CI^-_{(aq)} + CO2_{(g)} + H_2O_{(l)}$
lonic: $2H^+_{(aq)} + CaCO_{3(s)} \rightarrow Ca^{2+}_{(aq)} + CO2_{(g)} + H_2O_{(l)}$

• If the carbonate is in solution it simplifies further:

Full:
$$2HCI_{(aq)} + CaCO_{3(aq)} \rightarrow CaCI_{2(aq)} + CO2_{(g)} + H_2O_{(l)}$$

Ions: $2H^+_{(aq)} + \frac{2CI^-_{(aq)}}{(aq)} + Ca^{2+}_{(aq)} + \frac{CO_3^{2-}_{(aq)}}{(aq)} \rightarrow Ca^{2+}_{(aq)} + \frac{2CI^-_{(aq)}}{(aq)} + CO2_{(g)} + H_2O_{(l)}$
Ionic: $2H^+_{(aq)} + CO3^{2-}_{(aq)} \rightarrow + CO2_{(g)} + H_2O_{(l)}$

Bases:

Full:
$$2HNO_{3(aq)} + MgO_{(s)} \rightarrow Mg(NO_3)_{2(aq)} + H_2O_{(l)}$$

Ions: $2H^+_{(aq)} + 2NO_3^-_{(aq)} + MgO_{(s)} \rightarrow Mg^{2+}_{(aq)} + 2NO_3^-_{(aq)} + H_2O_{(l)}$
Ionic: $2H^+_{(aq)} + MgO_{(s)} \rightarrow Mg^{2+}_{(aq)} + H_2O_{(l)}$

Alkalis:

Full:
$$H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2H_2O_{(l)}$$

Ions: $2H^+_{(aq)} + \frac{SO_4^{2-}}{(aq)} + 2K^+_{(aq)} + \frac{2OH^-}{(aq)} \rightarrow 2K^+_{(aq)} + \frac{SO_4^{2-}}{(aq)} + 2H_2O_{(l)}$
Ionic: $2H^+_{(aq)} + 2OH^-_{(aq)} \rightarrow 2H_2O_{(l)}$

Redox reactions of acids with metals:

• These are **not acid base reactions** as water is not made, they are just **REDOX** reactions:

Full:
$$2HCI_{(aq)}$$
 + $Mg_{(s)}$ \rightarrow $MgCI_{2(aq)}$ + $H_{2(g)}$ lons: $2H^{+}_{(aq)}$ + $2CI^{-}_{(aq)}$ + $Mg_{(s)}$ \rightarrow $Mg^{2+}_{(aq)}$ + $2CI^{-}_{(aq)}$ + $H_{2(g)}$ lonic: $2H^{+}_{(aq)}$ + $Mg_{(s)}$ \rightarrow $Mg^{2+}_{(aq)}$ + $H_{2(g)}$

- These type of reactions are acids behaving as strong oxidising agents.
- Conc. nitric and sulphuric acids are examples of these types of reactions.

Conjugate acid - base pairs

Acids as proton donors:

- Acids are molecules that contain hydrogen that can be released as H⁺
- This will only donate protons if there is something to accept it a base

Hydronium ions:

 Aqueous acids donate their protons to water. This makes water a proton acceptor forming the hydronium ion / oxonium ion:

This reaction is often simplified to:

$$HCI_{(aq)}$$
 \rightarrow $H^{+}_{(aq)}$ + $CI^{-}_{(aq)}$ hydronium ion

H⁺_(aq) is a simplified way of writing H₃O⁺_(aq)

Acid - base pairs:

- The forward reaction is when a proton is donated to water forming ions.
- Strong acids fully dissociate meaning products predominate.
- Now consider the reverse reaction.
- The proton is now accepted by the NO₂.
- This makes this an acid base pair

Conjugate pairs

• There is a relationship between 2 of the species, one on either side of the equilibrium and they can be considered **conjugate pairs**:

Congugate pair

- Look at the NO₂ species on both side of the equilibrium. They are in the acid and the base (an acid / base pairpairs.
- Another Conjugate acid / base pair can be seen in the following reaction:

Congugate pair

What is pH?

The pH scale

- Aqueous acids contain [H⁺] in the range from 10¹ 10 10⁻¹⁵ Mol dm⁻³
- To compress such a large scale we use a negative logarithmic scale / logs
- This reduces the scale to whole numbers and deals with the small concentrations of [H⁺]
- This is the origin of the pH scale which gives us a relationship between pH and the hydrogen concentration:

$$pH = -log_{10}[H^+_{(aq)}]$$

OR

$$[H^{+}_{(aq)}] = 10^{-pH}$$

What does pH mean:

Low pH High $[H^+_{(aq)}]$ High pH Low $[H^+_{(aq)}]$

Converting between pH and [H⁺(aq)]

- [H⁺_(aq)] and **pH** are not usually whole numbers and may not be in standard form.
- To calculate the pH you will need your calculator:

Calculating the pH of strong acids:

Strong acids – donate protons to water completely

Weak acids – do no donate protons to water very readily (later)

• Consider the following:

Water
$$HCI_{(g)} \longrightarrow H^{+}_{(aq)} + CI^{-}_{(aq)}$$
 1 mole 1 mole

This means that for strong acids the [H⁺(aq)] = [ACID]

Examples:

1) Calculate the pH of 1 x 10⁻³ mol dm³ HCl:

$$[HCI_{(aq)}] = 1 \times 10^{-3} \text{ mol dm}^3$$

 $[H^+_{(aq)}] = 1 \times 10^{-3} \text{ mol dm}^3$
 $pH = -\log [H^+_{(aq)}]$
 $pH = -\log [1 \times 10^{-3}]$
 $pH = 3$

2) Calculate the pH of 1 x 10⁻⁶ mol dm⁻³ HNO₃

$$[HCI_{(aq)}] = 1 \times 10^{-6} \text{ mol dm}^3$$

 $[H^+_{(aq)}] = 1 \times 10^{-6} \text{ mol dm}^3$
 $pH = -\log [H^+_{(aq)}]$
 $pH = -\log [1 \times 10^{-6}]$
 $pH = 6$

The ionisation of water

The ionisation of water and K_w

- We always assume that water does not act as an acid or base in reactions.
- Water plays a big part in the understanding of acids.
- In order to understand acids then we need to understand water first:

Water: facts and models

Water conducts electricity. It has a conductivity of 26.6 x 10⁻⁶ Scm⁻¹

• The fact that water conducts at all means that there must be at least some ions present:

• This means that water would have an equilibrium expression:

$$K_c = \frac{[H^{\dagger}] \times [OH^{\dagger}]}{[H_2O]}$$

Rearrange this to:

$$K_c \times [H_2O] = [H^+] \times [OH^-]$$

- [H₂O] of water in water is always constant.
- K_c is also a constant. These 2 terms can be replaced with one constant which we call
- **K**_w is the **ionic product of water** (basically an kind of equilibrium constant just for water):

$$K_c \times [H_2O] = [H^{\dagger}] \times [OH^{\dagger}]$$

$$K_w = [H^{\dagger}] \times [OH^{\dagger}]$$

 K_w has an equilibrium constant of 1 x 10^{-14}

PH and the ionic product of water

$$K_w = [H^{\dagger}] \times [OH^{-}]$$

- Where K_w is known as the ionic product of water.
- At 298K the ionic product of water is 1 x 10⁻¹⁴ Mol² dm⁻⁶.

$$K_w = [H^+] \times [OH^-] = 1 \times 10^{-14}$$

- The protons and hydroxides are both produced from the dissociation of water.
- This means that the concentrations of both of these ions must be the same (as they both came from water).

$$[H^{\dagger}] = [OH]$$

• This means that in pure water at equilibrium:

$$[H^{+}] \times [OH^{-}]$$
 = 1 x 10⁻¹⁴
 $[H^{+}]^{2}$ = 1 x 10⁻¹⁴
 $[H^{+}]$ = (1 x 10⁻¹⁴)^{0.5} where ()^{0.5} = square root
 $[H^{+}]$ = 1 x 10⁻⁷

- The concentration of each of the ions produced by the dissociation of water = 1 x 10⁻⁷ Mol dm⁻³
- We know that the **pH of water = 7**
- A **negative logarithmic scale** compresses the values into a smaller range and gives us positive values, more useful to use as comparisons.
- This is the origin of the pH scale which gives us a relationship between pH and the hydrogen concentration:

$$pH = -log_{10}[H^+_{(aq)}]$$

The significance of K_w:

- **K**_w is basically an equilibrium expression linking [H⁺] and [OH⁻].
- We have already seen that at the **pH of water = 7** when the $[H^{\dagger}] = [OH^{\dagger}]$.

$$K_w = [H^{\dagger}] \times [OH^{-}]$$

Acidic conditions
$$[H^+] > [OH^-]$$
. K_w must always equal 1 x 10^{-14} Alkaline conditions $[H^+] < [OH^-]$. $[H^+] \times [OH^-] = 1 \times 10^{-14}$

The link between [H⁺] and [OH⁻]

• The [H⁺] and [OH] are linked by the ionic product of water.

$$K_w = [H^+] \times [OH^-] = {1 \times 10^-}_{14}$$

A few examples:

рН	1	3	5	7	9	11	13	
		10 ⁻³					10 ⁻¹³	
[OH ⁻]	10 ⁻¹³	10 ⁻¹¹	10 ⁻⁹	10 ⁻⁷	10 ⁻⁵	10 ⁻³	10 ⁻¹	

This means it is possible to calculate [H⁺] and hence pH from [OH]

pH of strong bases

Strong bases – dissociate completely to generate OH⁻ ions in water

Weak bases – do not dissociate completely to generate OH ions in water (later)

· Consider the following:

Water

NaOH_(s)
$$\rightarrow$$
 Na $^+$ _(aq) + OH $^-$ _(aq)

1 mole 1 mole 1 mole

 We use the ionic product of water to calculate the corresponding [H⁺] concentration for bases:

$$K_w = [H^+] \times [OH^-] = 1 \times 10^{-14}$$

Example: 0.1M solution of NaOH

$$[H^{+}] \times [OH^{-}] = 1 \times 10^{-14}$$

$$[H^{+}] \times 0.1 = 1 \times 10^{-14}$$

$$[H^{+}] = \frac{1 \times 10^{-14}}{0.1}$$

$$[H^{+}] = 1 \times 10^{-13}$$

$$pH = -log_{10}[H^{+}_{(aq)}]$$

$$pH = -log_{10}[1 \times 10^{-13}]$$

$$pH = 13$$

There is a quicker way:

- If you take -log₁₀ [OH] (essentially a 'pOH') you can use math's of indices to calculate the pH bases on the ionic product of water, K_w.
- If you take -log₁₀ of the ionic product of water, K_w:

$$[H^{+}]$$
 x $[OH^{-}]$ = 1 x 10⁻¹⁴
-log₁₀ $[H^{+}]$ x -log₁₀ $[OH^{-}]$ = -log₁₀ (1 x 10⁻¹⁴)
pH + pOH = 14

Strong and weak acids, calculating the pH for weak acids

Acid - base equilibria:

· Remember, in aqueous solutions acids dissociate.

Strong acids:

• They dissociate fully in water (100%) if they are strong acids:

Weak acids:

• They partially dissociate in water if they are weak acids:

This gives us an equilibrium, using ethanoic acid as an example:

Water
$$CH_3COOH_{(I)} \qquad \leftrightarrows \qquad H^{+}_{(aq)} + \qquad CH_3COO^{-}_{(aq)}$$
0.99 moles 0.01 moles 0.01 moles

- 1 mole of ethanoic acid dissociates to 0.99 moles of ethanoic acid forming 0.01 mole of each of the ions.
- The equilibrium lies well over to the LHS
- This means an equilibrium expression can be written:

The acid dissociation constant, Ka

For ethanoic acid:

$$CH_3COOH_{(I)} \qquad \Longleftrightarrow \qquad H^+_{(aq)} \qquad + \qquad CH_3COO^-_{(aq)}$$

An equilibrium expression can be written:

$$K_a = \frac{[H^{\dagger}] \times [CH_3COO^{\dagger}]}{[CH_3COOH]}$$

- Notice that we used K_c for **c**oncentrations. We use K_a when dealing with **a**cids.
- **K**_a is known as the **acid dissociation constant** and this can be either calculated or looked up in a table for use in calculations.
- Ethanoic acid has a K_a = 1.7 x 10⁻⁵ Mol dm⁻³.

Units of Ka

• These are worked out in exactly the same way as for Kc:

$$K_{a} = \frac{[H^{+}] \times [CH_{3}COO^{-}]}{[CH_{3}COOH]}$$

$$K_{a} = \frac{\text{mol dm}^{-3} \times \text{mol dm}^{-3}}{\text{mol dm}^{-3}}$$

$$K_{a} = \frac{\text{mol dm}^{-3} \times \text{mol dm}^{-3}}{\text{mol dm}^{-3}}$$

$$K_{a} = \frac{\text{mol dm}^{-3} \times \text{mol dm}^{-3}}{\text{mol dm}^{-3}}$$

Large K_a Large dissociation - Strong acid Small K_a Small dissociation - Weak acid

K_a and pK_a - a compressed scale:

$$K_a = \frac{[H^{\dagger}] \times [A^{\dagger}]}{[HA]}$$

- Just like the pH scale it is more useful to compress the scale.
- To keep it simple we use the same logarithmic scale when dealing with K_a values.
- Now, instead of pH we have pK_a:

$$pK_a = -log_{10}[K_a]$$

- If it is a strong acid then it will dissociate a lot. This gives a large top number and a small bottom number.
- This will give a large K_a value, but a small pK_a
- If it is a weak acid then it will dissociate a little. This gives a small value on the top and a large bottom number.
- This will give a small K_a value, but a large pK_a

Calculating the pH for weak acids

 The pH of a weak acid is more difficult to calculate as the acid does not completely dissociate.

$$HA_{(aq)} \longrightarrow H^{+}_{(aq)} + A^{-}_{(aq)}$$

1M 0M 0M
0.99M 0.01M 0.01M

- The [H⁺_(aq)] is not the same as the [HA_(aq)]
- It is calculated in 2 steps:

Step 1: [H⁺(aq)] must be calculated from the acid equilibrium expression, Ka:

$$K_a = \frac{[H^{\dagger}] \times [A^{\dagger}]}{[HA]}$$

- In order to calculate the [H⁺(aq)] we have to make a couple of assumptions: LEARN
- 1) For a weak acid: $[H^{+}_{(aq)}] = [A^{-}_{(aq)}]$ as both have been formed from the dissociation of the acid.
- 2) [HA_(aq)] remains unchanged a weak acid dissociates so little that the concentration remains virtually the same.

$$K_a = \frac{[H^+]^2}{[HA]}$$

• Rearrange to get:

$$[H^{+}]^{2} = K_{a} x [HA]$$

 $[H^{+}] = (K_{a} x [HA])^{0.5}$

Step 2: $[H^+_{(aq)}]$ is put in the pH formula: $pH = -log_{10}[H^+_{(aq)}]$

Example: Calculate the pH of a 0.100 mol dm $^{-3}$ ethanoic acid, $K_a = 1.7 \times 10^{-5}$ mol dm $^{-3}$

• Write the equation for the dissociation of the acid:

$$CH_3COOH_{(I)} \qquad \leftrightarrows \qquad H^+_{(aq)} \qquad + \qquad CH_3COO^-_{(aq)}$$

Step 1: $[H^{+}_{(aq)}]$ must be calculated from the acid equilibrium expression, K_a :

$$K_a = \frac{[H^{\dagger}] \times [CH_3COO^{\dagger}]}{[CH_3COOH]}$$

- Apply the assumptions:
- 1) $[H^{+}_{(aq)}] = [CH_{3}COO^{-}]$
- 2) [CH₃COOH] remains unchanged

$$K_a = \frac{[H^+]^2}{[CH_3COOH]}$$

• Put in the numbers:

1.7 x
$$10^{-5} = \frac{[H^+]^2}{0.100}$$

• Rearrange:

$$[H^+]^2 = 1.7 \times 10^{-5} \times 0.100$$

• Take the square root:

$$[H^+] = {1.304 \times 10^{-3} \text{ mol} \atop dm^{-3}}$$

• Now put the [H⁺_(aq)] in the pH formula:

pH =
$$-log_{10}[H^{+}_{(aq)}]$$

pH = $-log_{10}[1.3 \times 10^{-3}]$
pH = 2.88

Summary:

Step 1: Calculate [H⁺(aq)]

$$[H^+] = (K_a \times [HA])^{0.5}$$

Applying assumptions:

1)
$$[H^{+}_{(aq)}] = [A^{-}_{(aq)}]$$

2) [HA_(aq)] remains unchanged

Step 2: Calculate pH

$$pH = -log_{10}[H^+_{(aq)}]$$

Calculating K_a for weak acids

- This can of course work the other way to calculate the K_a of a weak acid
- For this we need:

1) pH of the weak acid

2) Concentration of the weak acid

Again is is done in 2 steps:

Step 1: Calculate [H⁺(aq)]

• This is done from the pH and working backwards:

$$[H^+] = 10^{-pH}$$

Step 2: Calculate Ka

Put the [H⁺] and [HA] to calculate K_a

$$K_a = \frac{[H^+]^2}{[HA]}$$

Example - Calculate K_a for 0.03 mol dm⁻³ methanoic acid, pH = 2.66

Step 1: Calculate [H⁺(aq)]

$$[H^+] = 10^{-pH}$$

 $[H^+] = 10^{-2.66}$
 $[H^+] = 2.19 \times 10^{-3}$

Step 2: Calculate Ka

• Put the [H+] and [HA] to calculate Ka

$$K_a = \frac{[\underline{H}^+]^2}{[HA]}$$

Put values in:

$$K_a = \frac{[2.19 \times 10^{-3}]^2}{[0.03]}$$
 $K_a = 1.6 \times 10^{-4} \text{ Mol dm}^{-3}$

Buffer solutions

A buffer solution minimises the change in pH with the small addition of acids or bases

- These are important in controlling the pH in living systems.
- · Buffer solutions are made:

1) Weak acid, HA

2) Conjugate base of the weak acid, A

- Ethanoic acid is a weak acid being only slightly ionised in solution
- The equilibrium lies over to the left:

$$CH_3COOH_{(aq)} + CH_3COO_{(aq)}$$

- What would happen if more ethanoate ions were added to the solution.
- This can be done by adding a small amount of sodium ethanoate which is highly ionised in solution:

$$CH_3COO^-Na^+_{(aq)} \rightarrow Na^+_{(aq)} + CH_3COO^-_{(aq)}$$

Alternativily:

Buffer solutions can also be made by partially neutralising an acid:

$$HCOOH_{(aq)} + NaOH_{(aq)} \rightarrow HCOO^-Na^+_{(aq)} + H_2O$$

This leaves some of the acid to dissociate partially:

• It also produces the ionic salt which dissociates fully in solution:

$$HCOO^{-}Na^{+}_{(aq)} \rightarrow Na^{+}_{(aq)} + HCOO^{-}_{(aq)}$$

- This gives you an equilibrium with a large amount of acid and the conjugate base.
- The high concentration of the conjugate base pushes the acid equilibrium over to the LHS.
- This means that the [H⁺(aq)] will be very small.

How does a buffer act?

• The 2 reactions needed to explain how they work are outlined below:

$$HA_{(aq)} \stackrel{\longleftarrow}{\longrightarrow} H^{+}_{(aq)} + A^{-}_{(aq)}$$
 Reaction 1
 $H^{+}_{(aq)} + OH^{-}_{(aq)} \stackrel{\longrightarrow}{\longrightarrow} H_{2}O_{(l)}$ Reaction 2

Addition of and acid, H⁺ ions:

- Addition of H⁺ ions increases the [H⁺]
- This moves the equilibrium of Reaction 1 to the left hand side
- This reduces the [H⁺] thus restoring the pH.

Addition of an alkali, OH ions:

- OH ions reacts with H ions in Reaction 1 according to Reaction 2 forming water.
- This reduces the [H⁺] in Reaction 1.
- The equilibrium in **Reaction 1** moves to the **right hand side** replacing the H⁺ used, thus restoring the pH

Overall:

$$\frac{\text{Added acid}}{\text{HA(aq)}} + \text{A}^{-}(\text{aq})$$

$$\frac{\text{Added alkali}}{\text{Added alkali}}$$

pH values of buffer solutions

Calculations involving buffer solutions

- We can calculate the pH of a buffer solution if we are given:
- 1) Ka of the weak acid
- 2) Equilibrium concentrations of the conjugate acid base pair

Method 1:

1) Write the reaction:

$$HA_{(aq)} \qquad \stackrel{\longleftarrow}{\longrightarrow} \qquad H^{+}_{(aq)} \qquad + \qquad A^{-}_{(aq)}$$

2) Write the equilibrium expression, Ka

$$K_a = \frac{[H^{\dagger}] \times [A^{\dagger}]}{[HA]}$$

- Remember [H⁺] does not equal [A⁻] as [A⁻] is determined from the conjugate base
- 3) Rearrange the equation to calculate the hydrogen concentration

$$[H^{+}] = K_a x \qquad [HA]$$

- 2 assumptions are made here
- 1) [HA] remains unchanged as it dissociates by such a small amount
- 2) [A⁻] = [NaA] as is dissociates fully
- 4) calculate the pH

$$pH = -log_{10}[H^+_{(aq)}]$$

Example:

- A buffer solution contains 0.600 Mol dm⁻³ propanoic acid and 0.800 Mol dm⁻³ sodium propanoate.
- The equilibrium constant, K_a for propanoic acid = 1.3 x 10⁻⁵ Mol dm⁻³.
- Calculate the pH of the buffer solution:
- 1) Write the reaction:

$$C_2H_5COOH_{(aq)} \hookrightarrow H^+_{(aq)} + C_2H_5COO^-_{(aq)}$$

2) Write the equilibrium expression, Ka

$$K_a = \frac{[H^{\dagger}] \times [C_2H_5COO^{\dagger}]}{[C_2H_5COOH]}$$

3) Rearrange the equation to get the hydrogen ion concentration:

$$[H^{+}] = K_a x \qquad \frac{[C_2H_5COOH]}{[C_2H_5COO^{-}]}$$
$$[H^{+}] = \frac{1.3 \times 10^{-5}}{x} \qquad \frac{0.600}{0.800}$$
$$[H^{+}] = 9.75 \times 10^{-6}$$

6) calculate the pH

pH =
$$-log_{10}[H^{+}_{(aq)}]$$

pH = $-log_{10}[9.75 \times 10^{-6}]$
pH = 5.01

Alternative Method 2: Recommended for non mathematicians

• Use the Henderson - Hasselbalch relationship:

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

$$pH = -logK_a + log \frac{[C_2H_5COO^-]}{[C_2H_5COOH]}$$

$$pH = -log 1.3 \times 10^{-5} + log \frac{[0.800]}{[0.600]}$$

$$pH = 5.01$$

The carbonic acid - hydrogen carbonate buffer system

- The pH of blood needs to be between 7.35 7.45.
- This is controlled by a mixture of buffers but the carbonic acid buffer is the most important:

Carbonic acid: H₂CO₃ and its conjugate base: HCO₃⁻

• The 2 reactions needed to explain how this buffer works is outlined below:

$$H_2CO_{3(aq)} \stackrel{\longleftarrow}{\longrightarrow} H^+_{(aq)} + HCO_3^-_{(aq)}$$
 Reaction 1
 $H^+_{(aq)} + OH^-_{(aq)} \longrightarrow H_2O_{(l)}$ Reaction 2

Addition of and acid, H⁺ ions:

- Addition of H⁺ ions increases the [H⁺]
- This moves the equilibrium of Reaction 1 to the left hand side
- This reduces the [H⁺] thus restoring the pH.

Addition of an alkali, OH ions:

- OH ions reacts with H ions in Reaction 1 according to Reaction 2 forming water.
- This reduces the [H⁺] in Reaction 1.
- The equilibrium in **Reaction 1** moves to the **right hand side** replacing the H⁺ used, thus restoring the pH

Overall:

Added acid
$$H_2CO_3(aq) \xrightarrow{\qquad} H^+(aq) + HCO_3^-(aq)$$
Added alkali

- Most materials released into the blood is acidic.
- This is removed by the conversion into carbonic acid.
- Enzymes convert the carbonic acid into dissolved CO₂ which is released as a gas through the lungs:

 The amount of CO₂ is controlled by breathing. Breathing heavily removes more CO₂ from the blood.

Neutralisation - titration curves

Titrations for AS chemistry

- During titrations you are measuring the exact volume of one solution that reacts with a known volume of another.
- This is called the **equivalence point**.
- Acid base titrations deals with the pH changes that occur during the movement from acid → base and from base → acid

Key features of titration curves - for a base added to an acid:

- When the base is first added, the pH increases very slightly due to the large excess of acid, the gradually increases.
- Within a drop, the pH increases sharply from below 7 to above 7, the middle of this section is the equivalence point.
- With continual addition of base, the increase in pH tails of until the increases is again very slight.

Choosing the indicator

- Many dyes are affected by pH as they are themselves weak acids.
- This means that they will themselves be subject to shifts in their equilibrium with the addition of H⁺ or OH⁻.
- This will then correspond to a colour change.
- They are often considered to be weak acids where the acid or corresponding base are both coloured.
- Consider an indicator, HIn

- Addition of an acid will move the equilibrium to the reactants. This shifts to the RED
- Addition of a base removes H⁺_(aq) which moves the equilibrium to the products. This shifts to the YELLOW
- When the [HIn] = [In] the indicator is at its end point
- Most indicators change colour over a couple of pH units.
- The end point for chemical indicators is in the middle of the pH range.

Indicator and titration curves

- The equivalence point of any neutralisation reaction is pH7
- The **end point** (colour change) in indicators do not necessarily correspond to the **equivalence point**
- Look at **methyl orange** it changes colour in the **pH** range of **2.8 4.0**.
- This means that the **end point** does not necessarily correspond to the **equivalence point for some**neutralisation reactions

Acids and alkalis can be strong or weak which gives us 4 types of neutralisation:

 Weak acids - weak alkalis are not titrated against each other due to the short pH change during neutralisation

Neutralisation - enthalpy changes

Standard enthalpy change of neutralisation

Consider the neutralisation of aqueous acid with aqueous base:

Full:
$$HCI_{(aq)} + NaOH_{(aq)} \rightarrow NaCI_{(aq)} + H_2O_{(I)}$$

Ions: $H^+_{(aq)} + CI^-_{(aq)} + Na^+_{(aq)} + OH^-_{(aq)} \rightarrow Na^+_{(aq)} + CI^-_{(aq)} + H_2O_{(I)}$
Ionic: $H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(I)}$

- Na⁺_(aq) and Cl⁻_(aq) are **spectator ions** and do not take part in the reaction.
- The enthalpy change for this is the **enthalpy change of neutralisation**:

Is the energy change when aq acid is neutralised by aq base forming 1 mole of water under standard conditions

Determination of enthalpy change of neutralisation:

Example:

25cm³ of 2M nitric acid is added to 25cm³ of 2M potassium hydroxide. The temperature increases from 22.0 °C to 35.5 °C.

Calculate the enthalpy change of neutralisation:

1) The energy change:

2) Calculate the number of moles used:

3) Calculate the amount of energy exchanged per mole of water, enthalpy change of neutralisation:

Enthalpy =
$$\frac{-2821.5}{0.0500}$$

Enthalpy =
$$-56430$$
 j Mol⁻¹

• The number of moles of acid: alkalil: water are the same for monobasic acids

Comparisons of enthalpy changes of neutralisation of different acids:

Acid	Reaction	$\Delta H^{ heta}_{neut}$ / Kj Mol $^{-1}$
Hydrochloric acid	Full: $HCI_{(aq)} + NaOH_{(aq)} \rightarrow NaCI_{(aq)} + H_2O_{(l)}$ Ionic: $H^+_{(aq)} + OH^{(aq)} \rightarrow H_2O_{(l)}$	- 57.9
Nitric acid	Full: $HNO_{3(aq)} + NaOH_{(aq)} \rightarrow NaNO_{3(aq)} + H_2O_{(I)}$ Ionic: $H^+_{(aq)} + OH^{(aq)} \rightarrow H_2O_{(I)}$	- 57.6
Hydrobromic acid	Full: $HBr_{(aq)} + NaOH_{(aq)} \rightarrow NaBr_{(aq)} + H_2O_{(I)}$ Ionic: $H^+_{(aq)} + OH^{(aq)} \rightarrow H_2O_{(I)}$	- 57.6
Ethanoic acid	Full: $CH_3COOH_{(aq)} + NaOH_{(aq)} \rightarrow CH_3COONa_{(aq)} + H_2O_{(l)}$ Ionic: $H^+_{(aq)} + OH^{(aq)} \rightarrow H_2O_{(l)}$	- 57.1

- Note that they are all around the same enthalpy changes.
- This is due to the fact that it is essentially the same ionic reaction once the spectator ions have been removed
- Ethanoic acid has a slightly lower enthalpy change due to the fact that ethanoic acid has to dissociate as the reaction proceeds.
- This means that the reaction is slower so energy is lost as it proceeds at a slower rate.