Equilibrium Review

Sulfuric acid, H₂SO₄, is made industrially by the Contact process. This reaction is an example of a dynamic equilibrium:

$$2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)} \triangle H = -98 \text{ KJmol}^{-1}$$

- (a) State two features of a reaction with a dynamic equilibrium.
- The concentrations of the reactants and the products remain the same.
- The rate of the forward reaction is the same as the
- (b) State and explain what happens to the equilibrium position of this reaction as: Cate of the Civicae

reaction

- i) the temperature is raised

 moves to the left because the

 forward reaction is exothermic
- ii) the pressure is increased

 moves to the right because there are
 fewer molecules of gas on the right
- iii) Suggest the optimum conditions for the Contact process

Low temp and high pressure

(c) (i) The conditions used for the Contact process are a temperature of 450°C to 600°C and a pressure of around 10 atmospheres.

Explain why the optimum conditions are not used.

Temp. A compromise is reached between rate and conversion. At low temp the rate is too slow.

Pressure - a compromise is reached between cost and conversion Catalyst - a catalyst is used to speed up the rate of conversion so that it is cost effective, to work at a low pressure.

(ii) Vanadium (v) oxide is used as a catalyst. What effect does this have on the conversion of $SO_2(g)$ into $SO_3(g)$.

The catalyst speeds up the reaction, but it doesn't change the equilibrium position because it speeds up the forward and

(iii) At least three catalyst chambers are used to ensure maximum conversion of SO₂(g). The conversion yield can exceed 98%. State two advantages of this high conversion rate.

More cost efficient and reduces the amount of SO2 pollution.

reverse reactions equally

Le Chatelier's Principle

Hydrogen and lodine react according to the equation:

$$H_{2(g)}$$
 + $I_{2(g)}$ \longrightarrow 2 $H_{(g)}$ $\triangle H = +530 \text{ KJmo} h^{-1}$

- (a) State Le Chatelier's principle when a system in dynamic equilibrium is subjected to a change, the position of equilibrium will shift to minimise the change
- (b) Use Le Chatelier's principle to predict what happens to the position of the equilibrium when:
 - (i) the temperature is increased moves to the right forward reaction is endothernic
 - (ii) the pressure is increased

 No effect equal number of males of gas on both

 sides
 - (iii) a catalyst is used

 Does not after the position of equilibrium speeds up
 the rate of the forward and reverse reactions equally

 Justify each of your predictions.
- (c) Write an expression for K_c for the equilibrium. State the units, if any.

$$h_{c} = [HI]^{2}$$

$$[H_{2}][I,]$$

Writing expressions for K_c

For each of the following reactions, write an expression for K_c . Assuming that the units of concentration are mol dm⁻³, work out the units for K_c in each case. If there are no units, state this.

1.
$$2HBr(g) \longrightarrow H_2(g) + Br_2(g)$$

2.
$$2NH_3(g) \rightarrow 3H_2(g) + N_2(g)$$

3.
$$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$

4.
$$4PF_5(g)$$
 \longrightarrow $P_4(g) + 10F_2(g)$

5.
$$2NO(g)$$
 $N_2(g) + O_2(g)$

6.
$$C_2H_5OH(1) + CH_3COOH(1)$$
 \longrightarrow $CH_3COOC_2H_5(1) + H_2O(1)$

Look at all the examples in which K_c has no units. What do all these reactions have in common?

Writing expressions for K_c

For each of the following reactions, write an expression for K_c . Assuming that the units of concentration are mol dm⁻³, work out the units for K_c in each case. If there are no units, state this.

1.
$$2HBr(g) \rightarrow H_2(g) + Br_2(g)$$

$$C = \frac{\left[H_2(g)\right] \left[Br_2(g)\right]}{\left[HBr(g)\right]^2}$$

$$2. 2NH_3(g) \rightarrow 3H_2(g) + N_2(g)$$

$$C = \frac{\left[H_2(g)\right]^3 \left[N_2(g)\right]}{\left[M'g\right]^2}$$

$$Rd^2 dm^{-6}$$

$$Rd^2 dm^{-6}$$

3.
$$NH_3(g) \rightarrow 1\frac{1}{2}H_2(g) + \frac{1}{2}N_2(g)$$

$$K_C = \frac{[th(g)]^{1.5}[N_2(g)]^{0.5}}{[Mt_3]} \quad mol \ dm^{-3}$$

4.
$$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$

$$Kc = \frac{[NO_2(g)]^2}{[NO(g)]^2 [O_2(g)]} \qquad mol^{-1}dm^{+3}$$

5.
$$4PF_5(g) \rightarrow P_4(g) + 10F_2(g)$$

$$K_C = \frac{[R_4(g)][F_5(g)]'}{[PF_5(g)]^4} \qquad \text{find } 7 \text{ dim}^{-21}$$

6.
$$2NO(g)$$
 $N_2(g) + O_2(g)$

$$k_c = \frac{[N_2[g]][O_2[g]]}{[NO(g]]^2}$$
No units

7.
$$C_2H_5OH(1) + CH_3COOH(1) \longrightarrow CH_3COOC_2H_5(1) + H_2O(1)$$

$$= \frac{[Ct_3CooC_2H_5(c)][Ct_3CooH(c)]}{[C_2t_3COH(c)]}$$
We write .

Look at all the examples in which K_c has no units. What do all these reactions have in common? Same no. of noles at each side of equation

Looking at Kc Values

1.	Consider	the ed	uilibrium:

$$CH_3COOH(aq) + CH_3CH_2OH(aq) \Leftrightarrow CH_3COOCH_2CH_3(aq) + H_2O(l)$$

a) Write an expression for K_c for the esterification process.

b) Write an expression for K_c for the hydrolysis process.

c) The K_c value for the esterification reaction is 4.0 at 298K. What is the K_c for the hydrolysis reaction at 298K?

d) Why is it important to quote the temperature?

2. Use the data below to answer the questions which follow:

example	K _c at 298K
$H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$	794
$H_2(g) + CO_2(g) \Leftrightarrow H_2O(g) + CO(g)$	1.00 x 10 ⁻⁵
$N_2(g) + O_2(g) \Leftrightarrow 2NO(g)$	4 x 10 ⁻³¹
$N_2O_4(g) \Leftrightarrow 2NO_2(g)$	0.05 mol dm ⁻³

a) The equilibrium position depends on the value of K_c

i) For which of these reactions does the equilibrium lie furthest to the $\frac{\text{left?}}{\text{log}}$ N_2 + O_2 \longrightarrow 2NO

ii) Where does this reaction take place?

Atmosphere

b) What is the K_c value, and units, for the reaction: $2NO_2(g) \Leftrightarrow N_2O_4(g)$ at 298K

The effect of Temperature on K_c

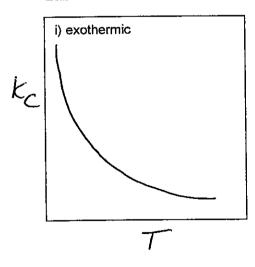
3. $H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$

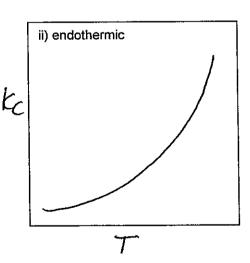
The K_c values for this reaction at four different temperatures are shown below:

temperature/K	K _c
298	794
500	160
700	54
1100	25

 $H_2(g) + CO_2(g) \Leftrightarrow H_2O(g) + CO(g)$

The K_{c} values for this reaction at four different temperatures are shown below:


temperature/K	Kc
298	1.00 x 10 ⁻⁵
500	7.76 x 10 ⁻³
800	2.88 x 10 ⁻¹
900	6.03 x 10 ⁻¹


a) For which of these reactions is the forward reaction endothermic? Explain your answer

to marches.

- b) Sketch graphs in the boxes below to show the change in K_{c} with temperature for
 - i) an exothermic
 - ii) an endothermic reaction.

Label the axes

Kc Calculations

Calculating K_c values from equilibrium concentrations

1. Equilibrium was established at 308K for the system:

$$CO(g) + Br_2(g) \longrightarrow COBr_2(g)$$

Analysis of the mixture gave the following concentration values:

8.78 x 10⁻³ mol dm⁻³ 4.90 x 10⁻³ mol dm⁻³ 3.40 x 10⁻³ mol dm⁻³ [CO(g)] $Br_2(g)$ $[COBr_2(g)]$

Calculate the value of the equilibrium constant.

79.0 md dm+3

2. At 250°C, equilibrium for the following system was established:

$$PCl_5(g)$$
 \longrightarrow $PCl_3(g)$ + $Cl_2(g)$

Analysis of the mixture showed that

1.50 x 10⁻² mol dm⁻³ 1.50 x 10⁻² mol dm⁻³ $[PCl_3(g)] =$ $[Cl_2(g)]$ $1.18 \times 10^{-3} \text{ mol dm}^{-3}$ $[PCl_5(g)]$ Calculate the value of the equilibrium constant.

0.191 moldm

Calculating an equilibrium concentration from Kc

3. For the equilibrium:

$$PCl_5(g)$$
 \longrightarrow $PCl_3(g)$ + $Cl_2(g)$

PCl₅(g) PCl₃(g) + Cl₂(g) $K_{c} = 0.19 \text{ mol dm}^{-3} \text{ at } 250^{0}\text{C}.$ One equilibrium mixture at this temperature contains PCl₅ at a concentration [PCl₃(g)] of 0.20 mol dm⁻³ and PCl₃ at a concentration of 0.010 mol dm⁻³

Calculate the concentration of 3.010 mol dm⁻³ 3.8 moldm-3 Calculate the concentration of the chlorine in this mixture.

4. For the equilibrium:

 \rightarrow 2H₂(g) + S₂(g)

[H2(g)] = JKCx[thS] [S2g]

2.25 x 10⁻⁴ mol dm⁻³ at 1400K. In an equilibrium mixture,

 $4.84 \times 10^{-3} \text{ mol dm}^{-3}$ and $[H_2S(g)]$ $2.33 \times 10^{-3} \text{ mol dm}^{-3}$.

Calculate the equilibrium concentration of hydrogen.

1.50×10-3 md das

Calculating Kc values from equilibrium numbers of moles

5. Some phosphorus (V) chloride was heated to 250°C in a sealed container until equilibrium was reached according to the following equation.

$$C = \frac{\left[\frac{\sigma \cdot 040}{2}\right] \left[\frac{\sigma \cdot 040}{2}\right]}{\left[\frac{\sigma \cdot 040}{2}\right]} PCl5(g) \longrightarrow PCl3(g) + Cl2(g)$$

$$C = \frac{\left[\frac{\sigma \cdot 040}{2}\right] \left[\frac{\sigma \cdot 040}{2}\right]}{\left[\frac{\sigma \cdot 040}{2}\right]} PCl5(g) \longrightarrow PCl3(g) + Cl2(g)$$

Analysis of the mixture showed that it contained 0.0042 mol of PCl₅(g), = 0.190 moldm 0.040 mol of PCl₃(g) and 0.040 mol of Cl₂(g). The total volume was 2.0 dm³. Calculate the concentration of each component and hence determine K_c.

At 250°C, in another equilibrium mixture of the reaction

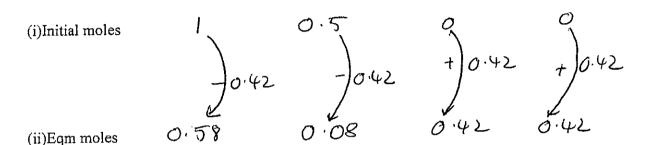
$$V_{C} = \begin{bmatrix} 0.01 \\ \hline 2 \end{bmatrix} \begin{bmatrix} 0.000 \\ \hline 2 \end{bmatrix} \text{Cl}_{5}(g) \longrightarrow \text{PCl}_{3}(g) + \text{Cl}_{2}(g)$$

Mixture	No. of moles of H ₂ (g)	No. of moles of $I_2(g)$	No. of moles of HI(g)
1	0.02265	0.02840	0.1715
2	0.01699	0.04057	0.1779

- Write the equation for the formation of hydrogen iodide from hydrogen a) = 2HIG) Holg) + Fz(g)
- Write an expression for the equilibrium constant, Kc. b)
- For mixture 1, calculate a value for the equilibrium constant, assuming that the total volume is 2.0 dm. Will one 45.72 no with that the total volume a value for the equilibrium constant, assuming c)
- d) 45.91 no units that the total volume is (V dm³.) nul cancel
- 8. This question concerns the equilibrium system

$$C_2H_5OH(l)$$
 + $CH_3COOH(l)$ \longrightarrow $CH_3COOC_2H_5(l)$ + $H_2O(l)$

8. This question concerns the equilibrium system
$$C_2H_5OH(l) + CH_3COOH(l) \longrightarrow CH_3COOC_2H_5(l) + H_2O(l)$$


$$U_{\bullet}O = \underbrace{CO \cdot 66 O \cdot 66}_{\text{CO} \cdot 66} \underbrace{K_c}_{\text{CH}_3} = 4.0 \text{ at } 25^{\circ}C$$
In a particular experiment, 0.33 mol of CH₃COOH(l), 0.66 mol of CH₃COOC₂H₅(l) and 0.66 mol of H₂O(l) are found to be present. Assuming that the total volume is \underbrace{V}_{\bullet} dm³, calculate the number of moles of C₂H₅OH(l)
$$\underbrace{CM_{\bullet}OOC_{\bullet}}_{\bullet \bullet \bullet \bullet} = \underbrace{CM_{\bullet}OOC_{\bullet}}_{\bullet \bullet \bullet} = \underbrace{CM_{\bullet}OOC_{\bullet}}_{\bullet \bullet} = \underbrace{CM_{\bullet}OOC_{\bullet}}_{\bullet} = \underbrace{CM_{\bullet}OC_{\bullet}}_{\bullet} = \underbrace{CM_{\bullet}OOC_{\bullet}}_{\bullet} = \underbrace{CM_{\bullet}OOC_{\bullet}}_$$

K_c without having to be converted to concentrations first? equal males an Loth Sides of the balanced equation. = 0.33

Calculating the from Initial amounts

1. I mole of ethanoic acid was added to 0.5 moles of ethanol and left in a stoppered flask until equilibrium was reached. At equilibrium 0.58 moles of ethanoic acid were left. Calculate Kc for the reaction:

 $CH_3COOH(l) + CH_3CH_2OH(l) \rightarrow CH_3COOCH_2CH_3(l) + H_2O(l)$

(iii) Write down the concentrations at equilibrium in moldm⁻³: assume the total volume is Vdm³

CH₃COOH(1)
$$O \cdot 58$$
 CH₃CH₂OH(1) $O \cdot 08$ CH₃COOCH₂CH₃(1) $O \cdot 42$ H₂O(1) $O \cdot 42$

(iv) Write the expression for Kc

(v) Use the values in (iii) to calculate Kc and give its units

$$Kc = \frac{0.42}{\sqrt{10.08}} \times \frac{0.42}{\sqrt{10.08}}$$

= 3.8 po units.

2. 24.0g of ethanoic acid was added to 13.8g of ethanol and left in a stoppered flask until equilibrium was reached. At equilibrium 20.0g of ethyl ethanoate were produced Calculate Kc for the reaction:

$$CH_3COOH(l) + CH_3CH_2OH(l) \rightarrow CH_3COOCH_2CH_3(l) + H_2O(l)$$

(i) Calculate the moles of each substance using the mass provided and Mr:

(i) Calculate the moles of each substance using the mass provided and MTC
$$CH_3COOH(1)$$
 $24\cdot0 = 0\cdot4$ $CH_3CH_2OH(1)$ $13\cdot8 = 0\cdot3$ $CH_3COOCH_2CH_3(1)$ $20\cdot0 = 0\cdot2.2$ 7

$$CH_3COOCH_2CH_3(1)$$
 $20.0 = 0.227$

 $CH_3COOH(l) + CH_3CH_2OH(l) \rightarrow CH_3COOCH_2CH_3(l) + H_2O(l)$

(i)Initial moles
$$0.4$$
 0.3 0.227 0.227 0.227 0.227 0.227 (ii)Eqm moles 0.173 0.073 0.227

(iii) Write down the concentrations at equilibrium in moldm⁻³: assume the total volume is Vdm³

CH₃COOH(1)
$$O \cdot 173$$
 CH₃CH₂OH(1) $O \cdot 073$ CH₃COOCH₂CH₃(1) $O \cdot 227$ H₂O(1) $O \cdot 227$ Cancel

$$CH_3COOCH_2CH_3(l)$$
 $O \cdot 227$ $H_2O(l)$ $O \cdot 227$

(iv) Write the expression for Kc

$$K_{C} = \frac{(Ct_{1}Cooct_{1}Ct_{2}Ct_{2}Ct_{1}Ct_{2}Ct_{2}Ct_{1}Ct_{2}Ct_{2}Ct_{1}Ct_{2}Ct_{2}Ct_{1}Ct_{2$$

(v) Use the values in (iii) to calculate Kc and give its units

$$= \frac{0.717 \times 0.227}{0.173 \times 0.072}$$

$$= 4.08 \text{ no units},$$

3. 417g of PCl₅ vapour was heated in a vessel of volume 20dm³ at 500K. At equilibrium 85.2g of Cl2 were present. Calculate Kc for the reaction:

$$\rightarrow$$
 PCl₃(g)

$$Cl_2(g)$$

(i) Calculate the moles of each substance from the masses provided:

$$Cl_2 \quad \frac{85 \cdot 2}{71} = 1 \cdot 2$$

$$Cl_2(g)$$

(ii)Initial moles

$$\frac{2}{-1\cdot 2}$$

(iii)Eqm moles

(iv)Eqm concs

$$\frac{1.2}{20} = 0.08$$

$$\frac{0.8}{20} = 0.04$$
 $\frac{1.2}{20} = 0.06$ $\frac{1.2}{20} = 0.06$

(iv) Write the expression for Kc

(v) Use the values in (iii) to calculate Kc and give its units

$$K_{c} = \frac{0.06 \times 0.06}{0.04}$$
 $= 0.09$ Mol dm⁻³ moldings

4. 2g of H₂ and 254g of I₂ vapour were heated in a vessel of volume 5 dm³ at 600K. At equilibrium 204.8g of HI were present. Calculate Kc for the reaction:

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

(i) Calculate the moles of each substance using the masses provided and the M_r :

$$H_2(g)$$
 $\frac{2}{2} = 1$

$$I_2(g) \quad \frac{2\varsigma \varphi}{2\varsigma 4} = 1$$

$$\frac{204.8}{12.8} = 1.6$$

$$H_2(g)$$
 + $I_2(g)$ \rightarrow 2HI(g)

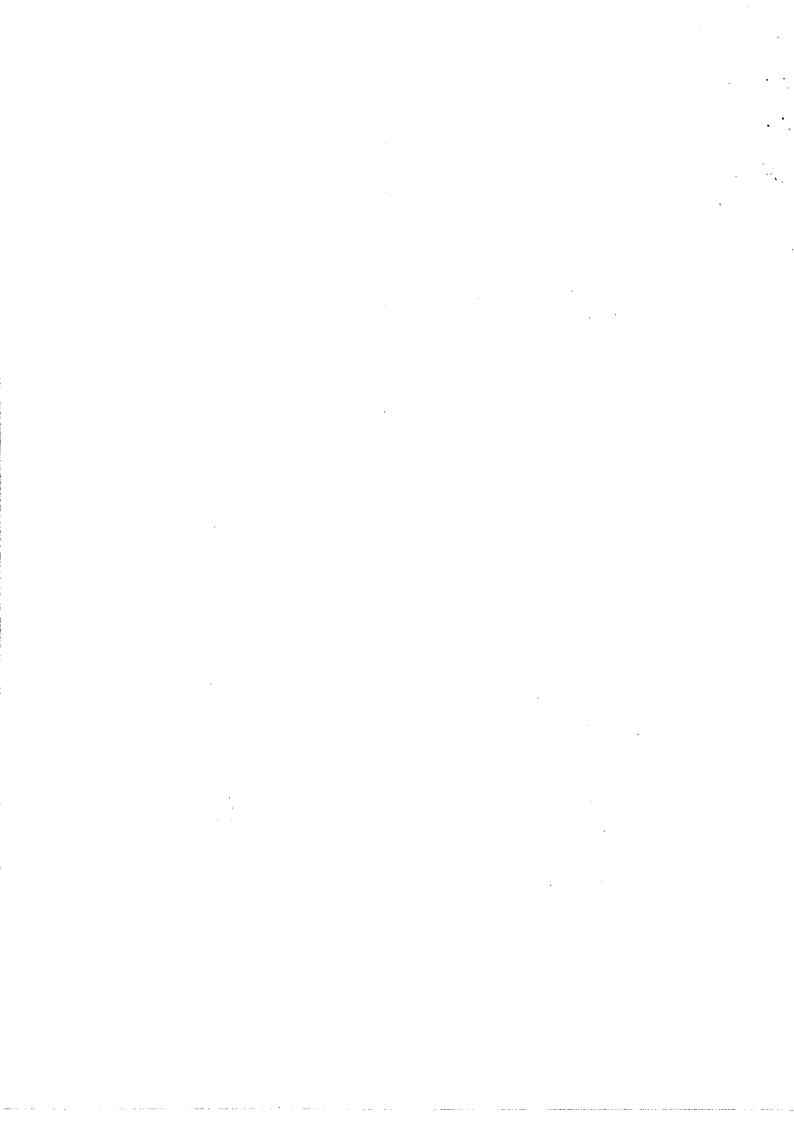
$$\frac{1}{-\frac{1}{2}}$$
 $\frac{1}{-\frac{1}{2}}$ $\frac{1}{1.6}$ $\frac{1}{1.6}$ $\frac{1}{1.6}$

$$\frac{0.2}{5}$$
 $\frac{0.2}{5}$ $\frac{1.6}{5}$

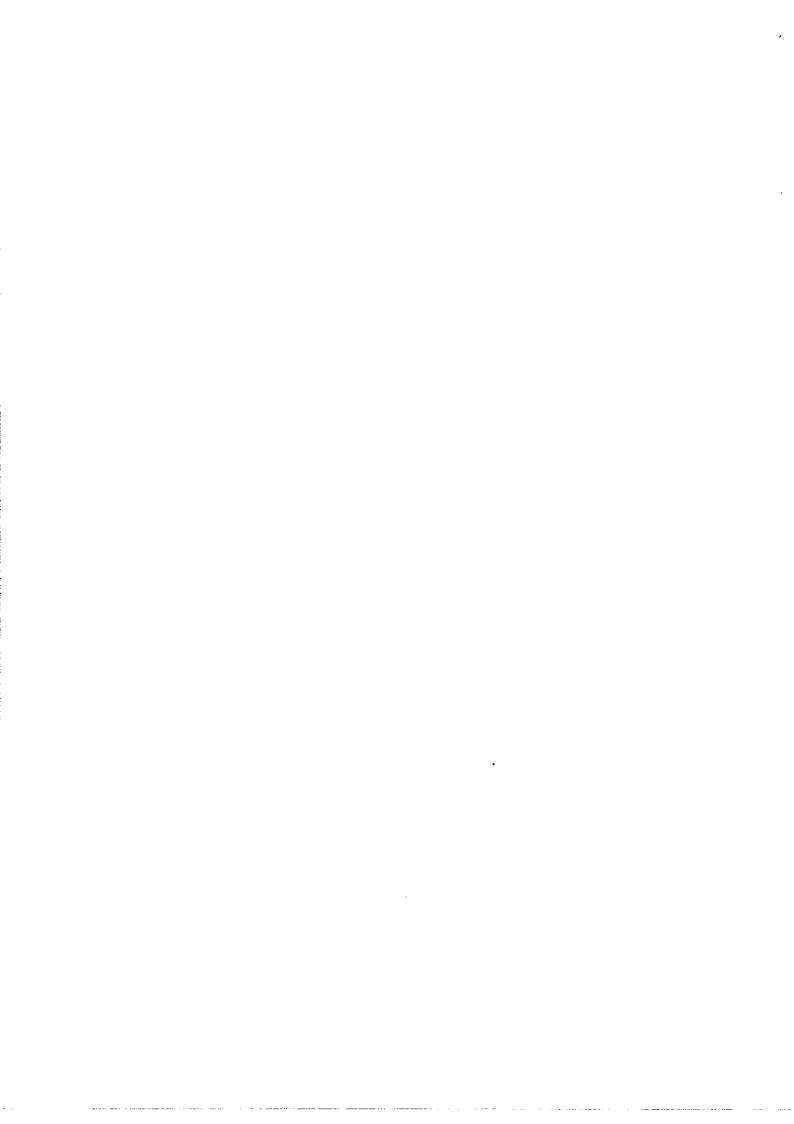
but V mill Canell at 80

can campare notes

ke = [HIg]


(HIGHTT)

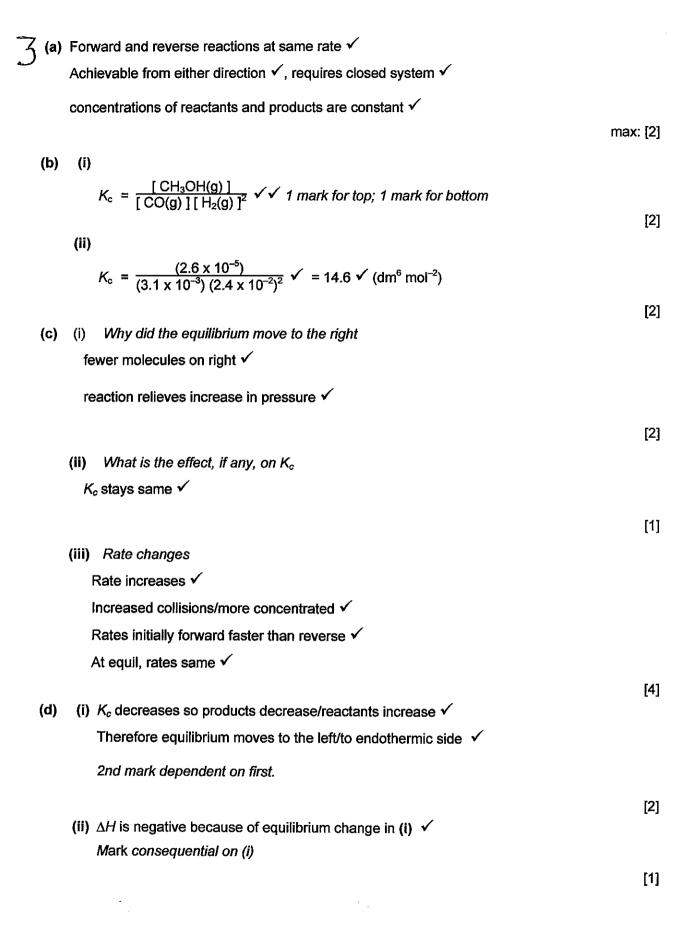
(v) Use the values in (iii) to calculate Kc and give its un


Equilibriun	Equilibrium Data for Kc						
			American de la companya de la compa				
Initial moles of acid (a)	Initial moles of alcohol (b)	Moles of acid at ≡ ^m (a-x)	Moles of alcohol at ≡ ^m (b-x)	Moles of alcohol Moles of ester at Moles of water at $\equiv^m (b-x)$ $\equiv^m (x)$ at $\equiv^m (x)$		Kc	
1.00	0.18	0.829		0.171	141.0	3-97	values
1.00	0.33	0.707	0.037	0.293	0.293	3.28	van .
1.00	0.50	0.586	980.0	9.4.6	414.0	3.40	Oxogen-
1.00	1.00	0.333	0.883	±99.0	₹99.0	10.4	-mental Omic)
1.00	2.00	0.142	1.142	858.0	0.858	4.54	
1.00	8.00	0.034	7.034	996.0	99 b. O	3.90	

NB. As the amount of alcohol added is increased the equilibrium shifts further to the right so the amount of products formed should also increase and the amount of acid left unreacted decreases.

On the addition of 8 moles of alcohol the reaction is virtually complete ie. nearly 1 mole of ester and water are formed.

Question	Expected Answers	Marks
1 (a)	$K_c = \frac{[CH_3COOC_2H_5][H_2O]}{[CH_3COOH][C_2H_5OH]} \checkmark \checkmark$ award 1 mark if upside down	[2]
(b) (i)	СН3СООН С₂Н₅ОН СН3СООС₂Н₅ Н₂О 6.0 12.5 0 0 1 7.5 5 5	[2]
(ii)	$K_c = \frac{5 \times 5}{1 \times 7.5} = 3.3 \checkmark \text{ no units } \checkmark$ (or ecf based on answers to (i) and/or (a))	[2]
(c)	leave experiment longer ✓ monitor compositions and repeat until constant value ✓	[2]
(d) (i)	more $CH_3COOC_2H_5$ & H_2O / less CH_3COOH & C_2H_5OH \checkmark equilibrium \longrightarrow right \checkmark AW	[2]
(ii)	K _c stays same ✓	[1]
(e)	stays the same/ catalyst does not shift equilibrium position forward & reverse reactions altered by same amount/	
(A) (i)	equilibrium achieved in less time [2]	
(f) (i)	equilibrium → left ✓ more reactants / less products ✓ [2]	
(ii)	forward reaction is exothermic 🗸	[1] Total: 16



Question		Expected Answers	
2 (a)	(i)	INO12	Marks
	• • •	$K_{c} = \frac{[NO]^{2}}{[N_{2}][O_{2}]} \checkmark \checkmark \qquad award 1 \text{ mark if upside down}$ $K_{p} \text{ expression worth 1 mark}$	[2]
	(ii)	Equil \longrightarrow left because K_c is very small $[O_2(g)] = \frac{[NO]^2}{[N_2] \times K_c} = \frac{(4.0 \times 10^{-16})^2}{1.1 \times 4.8 \times 10^{-31}} \checkmark$	[1]
	(iii)	= 0.30 mol dm ⁻³ \checkmark (calculator: 0.303030303) answer given to 2 sig figs \checkmark 3.3 \checkmark (upside down) calc: 3.3 7.6 x 10 ¹⁴ \checkmark (missing out ²) calc: 7.5757 0.37 \checkmark \checkmark (1.1 on top) calc: 0.366666 5.2 x 10 ⁻⁴⁸ \checkmark \checkmark ('4' values swapped) calc: 5.236363. x 10 ⁻⁴⁸	
(b)	(i) (ii)	ΔH is +ve ✓ equilibrium moves to the right to compensate for increase in temperature/to lower the temperature / to minimise the change ✓	[3]
		increase in proportion of NO ✓ because K _c increases Can be linked to either increased proportion of NO or enthalpy change ✓	[4]
	(iii)	2NO + O ₂ → 2NO ₂ ✓ ✓ species correct for 1st mark 'simplest' balanced equation for 2nd mark NO + ¹/₂O₂ → NO₂ also gets both marks N₂O₄ is fine NO₂ for 1st mark	[2]

Optimum Pressure	
ł	
Optimum Temperature	
The state of the s	
Reason mark can only be awarded if the condition mark is	
correct.	
Condition mark is independent	
1000°C used to increase rate with more energetic collisions	
OR so that a greater proportion of molecules exceed	
activation energy ✓	
10 atm used to increase rate by increasing concentration OR	
Increasing collisons ✓	
Cotolications of the Second Sec	
catalyst used to increase rate by lowering the activation	[7]
NOT increase any illumination of the	111
NOT increase equilibrium yield	į
Quality of written communications	
Recognition of a compromise between rate and a sufficient	[1]
amount V	
	Total: 20

[1]

Unifying concepts

***************************************	1	= alternative and acceptable answers for the same marking point
	 ;	= separates marking points
Abbreviations,	NOT	= answers which are not worthy of credit
annotations and	0	= words which are not essential to gain credit
conventions used in	``	= (underlining) key words which <u>must</u> be used to gain credit
the Mark Scheme	ecf	= error carried forward
	AW	= alternative wording
	ora	= or reverse argument
	loia	- or reverse argument

(a) (i)
$$K_c = \frac{[NO_2(g)]^2}{[N_2O_4(g)]} \checkmark$$

(ii)
$$K_c = \frac{(0.0150)^2}{(0.0390)} = 5.77 \times 10^{-3} \checkmark \text{ mol dm}^{-3} \checkmark \text{ accept } 5.76923 \text{ to } 5.8 \times 10^{-3}$$

If (i) is upside down: $\frac{[N_2O_4(g)]}{[NO_2(g)]^2}$, then ans = 173 \checkmark dm³ mol⁻¹ \checkmark accept 173.33333.....to 170

if no square in (i): $\frac{[NO_2(g)]}{[N_2O_4(g)]}$, then ans = 0.384615.. \checkmark no units \checkmark (must be stated)

if no square in (i) and inverse: $\frac{[\ N_2O_4(g)\]}{[\ NO_2(g)\]}$, 2.6 \checkmark no units \checkmark (must be stated)

(b)
$$\Delta H = (2 \times 33) - (9) \checkmark = (+)57 \text{ kJ mol}^{-1} \checkmark$$

common errors: $-57 \checkmark \times +24 \checkmark \times +75 \checkmark \times -24 \times \times$
[2]

(c) change more NO₂ / less N₂O₄ ✓
explanation equilibrium position —→ right or forwards / K₂ increases ✓
reaction is endothermic ✓

THIS ANSWER IS CONSEQUENTIAL ON SIGN OF THE ANSWER TO (i)

BUT, a candidate interpreting a '+' enthalpy change as 'exothermic' (or vice versa) will lose the 3rd mark but the 2 'logic marks' before are still consequentially available.

(d) 1 mol N₂O₄ reacts with 2 mol NaOH \checkmark amount of NaOH required = 0.00930 mol \checkmark volume NaOH = 1000 x 0.0093/0.300 = 31.0 cm³ / 0.0310 dm³ \checkmark

Common errors

3.1 x 10 x (where x is incorrect) \checkmark \checkmark *

15.5 cm³ / 0.0155 dm³ ✓ ✓ ×

1.55 x 10^x (where x is incorrect) ✓ ××

62 cm³ / 0.062 dm³ ✓ ✓ ×

6.2 x 10^x (where x is incorrect) ✓ xx [3]

[Total: 11]

[3]

,