5.1.1 & 5.1.2

Kinetics &

Equilibrium

Exam Questions

GChemistry

Name ANSWERS

annota conver	the Mark	/ = alternative and acceptable answers for the same marking; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Questi	on	Expected Answers	
1	(a) (i)	constant half-life	Marks
			[1]
	(li)	rate = k [N ₂ O ₅] \(\square \)	[1]
		Common error will be to use '2' from equation.	
	(iii)	curve downwards getting less steep / curve goes through 1200,0.30; 2400,0.15; 3600,0.075 /	[2]
	(iv)	tangent shown on graph at t = 1200 s 🗸	
	(v)	3.7(2) \times 10 4 \checkmark mol dm ⁻³ s ⁻¹ \checkmark ecf possible from (ii) using $[N_2O_5]^x$ (2nd order answer: 2.2(3) \times 10 4)	[2]
(1	b) (i)	slow step 🗸	
	(ii)	(CH ₃) ₂ C=CH ₂ + H ₂ O> (CH ₃) ₃ COH ✓	[11]
	(iii)	H'is a catalyst 🗸	
•		H* used in first step and formed in second step/ regenerated/ not used up 🗸	[2]
****	(iv)	rate = k [(CH ₃) ₂ C=CH ₂] [H ⁺] \(\square\$ common error will be use of H ₂ O instead of H ⁺	[1]
			Total: 12

2. (a) $k = \frac{\text{rate}}{[H_2(g)][NO(g)]^2}$

If [NO] is not squared: $\frac{\text{rate}}{[H_2(g)][NO(g)]} \times$, ans = 250 \checkmark units: dm³ mol⁻¹ s⁻¹ \checkmark

If the expression is upside down: $\frac{[H_2(g)][NO(g)]^2}{\text{rate}}$ ×, ans = 1.2 x 10⁻⁵ \checkmark units: mol² s dm⁻⁶ \checkmark

upside down and not squared: $\frac{[H_2(g)][NO(g)]}{\text{rate}} **, \text{ ans } = 0.004 \text{ mol s dm}^{-3} \checkmark$ [3]

(b) (i) effect on rate x 2 ✓

reason 1st order wrt H₂(q) ✓

[2]

- (ii) effect on rate x 1/4 ✓

 reason 2nd order wrt NO(g) ✓
- (iii) effect on rate x 27 √

[1]

[2]

(c) (i) slowest step ✓

[1]

(ii) step 1 (RDS)
$$H_2(g) + 2 NO(g) \checkmark \longrightarrow N_2O(g) + H_2O(l)$$

step 2 $H_2(g) + N_2O(g) \longrightarrow N_2(g) + H_2O(l)$ rest of equations \checkmark

[2]

(d) (i) NH₃, $-3 \checkmark$ NO, +2 \checkmark HNO₃ +5 \checkmark

[3]

(ii) $4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(l)$ products + reactants \longrightarrow 1 mark; balancing \longrightarrow 1 mark \checkmark \checkmark

[2]

(iii) molar masses NH₃ = 17; HNO₃ = 63 ✓ mass = 700 000 x 17/63 = 1.89 x 10⁵ tonnes ✓ calc value 1.8888888.... x 10⁵ ans: mark could be consequential on incorrect molar masses.

[2]

[Total: 18]

Mark Scheme	Unit Code	Session	Year	Version
Page 4 of 6	2816 1	January	2004	FINAL

Abbreviations,	/ = alternative and acceptable anguars for the come	
annotations and	/ = alternative and acceptable answers for the same mark : = separates marking points	ing point
conventions	NOT = answers which are not worthy of credit	
used in the Mark	The state of the s	
Scheme	and a second to going of cont	
	= (underlining) key words which <u>must</u> be used to gain cr ecf = error carried forward	edit
	AW = alternative wording	
	ora = or reverse argument	
	or reverse argument	
Question	Expected Answers	Marks
ვ (a)	$H_2O_2 + 2I^+ + 2H^+ \longrightarrow I_2 + 2H_2O$	
	equation includes H2O, I', H' as reactants and I2 as	
	product *	
	equation balanced 🗸	[2]
(b) (i)	Exp 2 has twice [I] as Exp 1 and rate has quadrupled \checkmark	
. , , ,	so order = 2 with respect to I	
	Exp 3 has twice [H'] as 2 and rate is unchanged \checkmark ,	
	so order = 0 with respect to H' \AW	ran
	The state of the s	[4]
(ii)	rate = $k[H_2O_2][T]^2 \checkmark \checkmark 1$ mark for: rate = $k \times concs$	F21
. ,	(ecf from (i))	[2]
(iii)	$k = \text{rate}/[H_2O_2][T]^2 \checkmark (\text{ecf from (ii)})$	
•		
	From one of expts,	
	e.g. Exp 1: $k = 1.15 \times 10^{-6}/(0.01)(0.01)^2$	
	e.g. Exp 1: $k = 1.15 \times 10^{-6}/(0.01)(0.01)^2$ = 1.15 \(\sqrt{cm}^6\) mol^{-2} s ⁻¹ \(\sqrt{cm}^7\)	f21
	(ecf from (ii))	[3]
(c)		
• •		
	rate of	
	reaction	
	reaction	
	stroight line increasing	
	straight line increasing ✓ through 0.0 ✓	ron
		[2]
1	0	
1	0 [H ₂ O ₂ (aq))]	
	/mol dm ²³	
(d) (l)	2H ₂ O ₂ → 2H ₂ O + O ₂ ✓	F42
		[1]
(ii)	$1 dm^3 H_2O_2 \longrightarrow 20 dm^3 O_2 \checkmark$	
	amount of $O_2 = 20/24 \text{ mol } \checkmark$	
1	concentration of $H_2O_2 = 2 \times 20/24 = 1.67 \text{ mol dm}^{-3} \checkmark$	ron
1	The state of the s	[3]
		18
		Total: 17
		10tal. 17

evidence on graph to support constant half life (at least two half-lifes shown)

4(a) (i) What is meant by the half-life of a reaction, t_x?

Time for half a reactant to react ✓

[1]

(ii) $t_{\text{M}} = 460 \pm 10 \text{ s}$ \checkmark constant half life \checkmark

[3]

(iii) no change ✓

[1]

(b) $k = 0.693 / t_{\%} = 0.693/460 = 1.51 \times 10^{-3} \checkmark s^{-1} \checkmark$ for consequential marking: answer should be: 0.693/ans to (a)(ii)

[2]

(c) Rate = $k[C_6H_5N_2Cl(aq)]$

[1]

(d) (i) After 800s, $[C_6H_5N_2Cl(aq)] = 1.8 \times 10^{-4} \text{ mol dm}^{-3} \checkmark$ (allow any value from 1.7 x 10⁻⁴ to 1.8 x 10⁻⁴)

[1]

(ii) Rate = $k[C_8H_5N_2Cl(aq)] = (1.51 \times 10^{-3}) \times (1.8 \times 10^{-4})$ = 2.7 x 10⁻⁷ \checkmark mol dm⁻³ s⁻¹ \checkmark

[2]

(iii) measure gradient at t = 800 s

[1]

[Total: 12]

Mark Scheme	Unit Code	Session	Year	Version
Page 4 of 7	2816/01	January	2005	Final

breviations, /	= alternative and acceptable answers for the same mark	sing point
	- separates marking points	₹ •
	and the state of t	
ed in the Mark (and the accounting to delit clear	
e	= (underlining) key words which must be used to gain or	edit
1	= error carried forward	
Α	= alternative wording	
OI	= or reverse argument	
estion E	ected Answers	
(a) (i) O		Marks
	C ₂ H ₄ ✓	_
"	-21 14 ·	[1]
(ii) 2		
		[1]
(iii) ra	= k[O₃] [C₂H₄] ✓	
	1-31 1 - 51 141 .	[1]
(b) (l) m	ure gradient/tangent √	
	O/start of reaction ✓	[2]
(ii) k	<u>rate</u> [O ₃] [C ₂ H ₄] ✓	
	[03] [02[14]	
	1.0×10^{-12}	700
k	$\frac{1.0 \times 10^{-12}}{0.5 \times 10^{-7} \times 1.0 \times 10^{-8}} = 2 \times 10^{3} \checkmark \text{dm}^{3} \text{ mol}^{-1} \text{s}^{-1} \checkmark$	[3]
	YO Y TO X TO X TO 2 TO 2 TO 1 TO 1 TO 2 A	1
(iii) 2 n	CH2O forms for every 0.5 mol O2/	547
sto	iometry of CH2O: Oz is not 1:1 V	[1]
	7	
	ncreases 🗸	[27
	eases √	[2]
(c) (l) eac	itom has two unpaired electrons 🗸	147
i		[1]
(ii) 2 o	gen atoms bonded by double bond 🗸	
1741	exygen bonded by a covalent bond and outen challe	
(COI)	·1 · Y	
For	d mark, all O atoms must have an octet.	
1		1
Atı	ingular molecule would have 3 single covalent bonds	-
1 101	much but the origin of each electron much be also	
tor	d mark	[2]
/#	6 6	r-1
(iii) amo	of O_3 in 150 kg = 150 x $10^3/48 = 3.13 \times 10^3$ mol \checkmark	
I Unio	Of G radicals in 1 a = 1 /25 5 = 2 a 2 4 a 2	1
1 1 110	destroys 3.13 x 10°/2 82 x 10°2 = 1 11 × 105 mal 0	
1 - 0,	incul desiroys LILX I(1" (), molecules of	
(calc	tor: 110937)	[3]
		Total: 17
1 - 0,	ical destroys 1.11 × 10° O₃ molecules √ tor: 110937)	[3]

6 (a)(i)	H ⁺ (aq): Exp 3 has 2 x [H ⁺ (aq)] as Exp 1 and rate has increased by 4✓	[2]
	so order = 2 with respect to H ⁺ (aq) ✓	
	BrO₃⁻(aq): Exp 2 has 2 x [BrO₃⁻] as Exp 1 and rate increases by 2 ✓ so order = 1 with respect to BrO₃⁻(aq) ✓	[2]
	Br⁻(aq): Exp 4 has 3 x [BrO₃⁻(aq)] as Exp 1 which increases rate by 3 and Exp 4 has 2 x [Br⁻(aq)] as Exp 1 rate has increased by 6 so doubling [Br⁻(aq)] doubles rate ✓ so order = 1 with respect to Br⁻(aq) ✓	[2]
(ii)	$rate = k [H^{+}]^{2} [BrO_{3}^{-}] [Br^{-}] \checkmark$	[1]
(iii)	$k = \frac{\text{rate}}{[\text{H}^{+}]^{2} [\text{BrO}_{3}^{-}] [\text{Br}^{-}]} / \frac{1.68 \times 10^{-5}}{0.30^{2} \times 0.05 \times 0.25} \checkmark$	[4]
	= 0.0149/0.015 \checkmark units: dm ⁹ mol ⁻³ s ⁻¹ \checkmark	
	answer to 2 or 3 sig figs ✓ (calculator: 0.0149333333)	
	mark consequentially from (a)(ii)	
	common ecfs: From expt 1: rate = $k [H^{+}]^{2} [BrO_{3}^{-}] \longrightarrow 0.00373 \text{ dm}^{6} \text{ mol}^{-2} \text{ s}^{-}$	
(b)	gradient at t=0/start ✓	[1]
(c)	Overall equation has different stoichiometry/number of moles to rate equation ✓	[1]
		13

7. From graph, constant half-life (1)

Therefore 1st order w.r.t. [CH₃COCH₃] (1)

2

From table, rate doubles when [H⁺] doubles (1)

Therefore 1st order w.r.t. [H⁺] (1)

2

From table, rate stays same when $[l_2]$ doubles (1)

Therefore zero order w.r.t. [l₂] (1)

Order with no justification does not score.

2

rate = $k[H^+][CH_3COCH_3]$ (1)

(from all three pieces of evidence)

$$k = \frac{\text{rate}}{[\text{H}^+][\text{CH}_3\text{COCH}_3]} / \frac{2.1 \times 10^{-9}}{0.02 \times 1.5 \times 10^{-3}} \text{ (1)}$$

=
$$7.0 \times 10^{-5}$$
 (1) dm³ mol⁻¹ s⁻¹ (1)
accent 7×10^{-5}

4

rate determining step involves species in rate equation (1)

two steps that add up to give the overall equation (1)

The left hand side of a step that contains the species in rate-determining step (1) i.e., for marking points 2 and 3:

 $CH_3COCH_3 + H^+ \rightarrow [CH_3COHCH_3]^+$

$$[CH3COHCH3+] + I2 \rightarrow CH3COCH2I + HI + H+$$

3

1

organises relevant information clearly and coherently, using specialist vocabulary where appropriate Use of the following four words/phrases: constant, half-life, order, doubles/x2 (1)

[14]

Questic	on	Expected Answers	Marks
1 (;	a)	$K_{c} = \frac{[CH_{3}COOC_{2}H_{5}][H_{2}O]}{[CH_{3}COOH][C_{2}H_{5}OH]} \checkmark \checkmark$ award 1 mark if upside down	[2]
(I	b) (i)	CH₃COOH C₂H₅OH CH₃COOC₂H₅ H₂O 6.0 12.5 0 0 1 7.5 5 5	[2]
	(ii)	$K_c = \frac{5 \times 5}{1 \times 7.5} = 3.3 \checkmark \text{ no units } \checkmark$ (or ecf based on answers to (i) and/or (a))	[2]
(6	c)	leave experiment longer monitor compositions and repeat until constant value	[2]
(0	d) (i)	more $CH_3COOC_2H_5$ & H_2O / less CH_3COOH & C_2H_5OH \checkmark equilibrium \longrightarrow right \checkmark AW	[2]
	(ii)	K _c stays same √	[1]
(e))	stays the same/ catalyst does not shift equilibrium position forward & reverse reactions altered by same amount/ equilibrium achieved in less time	rea
<u>(f)</u>) (i)	equilibrium> left \(\sigma\)	[2]
		more reactants / less products 🗸	[2]
	(ii)	forward reaction is exothermic 🗸	[1]
		·	Total: 16

Question	Expected Answers	
2 (a) (i)	, [NO] ²	Marks
	7	503
	K _p expression worth 1 mark	[2]
(ii)	Equil \longrightarrow left because K_c is very small	
(iii)	$[O_2(g)] = \frac{[NO]^2}{[N_2] \times K_c} = \frac{(4.0 \times 10^{-18})^2}{1.1 \times 4.8 \times 10^{-31}} \checkmark$	[1]
	= 0.30 mol dm ⁻³ / (calculator: 0.303030303) answer given to 2 sig figs / 3.3 / (upside down) calc: 3.3 7.6 x 10 ¹⁴ / (missing out ²) calc: 7.5757 0.37 / (1.1 on top) calc: 0.366666 5.2 x 10 ⁻⁴⁶ / ('4' values swapped) calc: 5.236363. x 10 ⁻⁴⁶	
(b) (i)	ΔH is +ve ✓	[3]
(ii)	equilibrium moves to the right to compensate for increase in temperature/to lower the temperature / to minimise the change ✓	10
	increase in proportion of NO ✓ because K _c increases Can be linked to either increased proportion of NO or enthalpy change ✓	
	enthalpy change ✓	[4]
(iii)	2NO + O ₂ → 2NO ₂ ✓ ✓ species correct for 1st mark	roy
	'simplest' balanced equation for 2nd mark NO + ¹/₂O₂ → NO₂ also gets both marks N₂O₄ is fine NO₂ for 1st mark	[2]

(c)	Optimum Pressure	
	low pressure ✓	
	fewer gaseous moles on left ✓	ł
	Optimum Temperature	
	optimum: low temperature ✓	
	forward reaction is exothermic ✓	
	Reason mark can only be awarded if the condition mark is	
	correct.	
	Condition mark is independent	
		1
	1000°C used to increase rate with more energetic collisions	j
	or so that a greater proportion of molecules avocad	
	activation energy ✓	
	10 atm used to increase rate by increasing concentration OR	
	increasing collisons ✓	
	Catalyst used to increase ante but he	
	Catalyst used to increase rate by lowering the activation energy/providing a lower energy route ✓	[7]
	NOT increase equilibrium yield	1,1
	Quality of written communication:	
	Recognition of a compromise between rate and equilibrium	[1]
	amount /	
		Total: 20

Unifying concepts

	:	 alternative and acceptable answers for the same marking point separates marking points
Abbreviations,	NOT	= answers which are not worthy of credit
annotations and conventions used in	()	= words which are not essential to gain credit
the Mark Scheme	-	(underlining) key words which <u>must</u> be used to gain credit
	ecf	= error carried forward
	AW	= alternative wording
	ora	= or reverse argument

4. (a) (i)
$$K_c = \frac{[NO_2(g)]^2}{[N_2O_4(g)]} \checkmark$$
 [1]

(ii)
$$K_c = \frac{(0.0150)^2}{(0.0390)} = 5.77 \times 10^{-3} \checkmark \text{ mol dm}^{-3} \checkmark \text{ accept } 5.76923 \text{ to } 5.8 \times 10^{-3}$$

If (i) is upside down: $\frac{[N_2O_4(g)]}{[NO_2(g)]^2}$, then ans = 173 \checkmark dm³ moi⁻¹ \checkmark accept 173.33333.....to 170

if no square in (i): $\frac{[NO_2(g)]}{[N_2O_4(g)]}$, then ans = 0.384615.. \checkmark no units \checkmark (must be stated)

if no square in (i) and inverse: $\frac{[N_2O_4(g)]}{[NO_2(g)]}$, 2.6 \checkmark no units \checkmark (must be stated)

(b)
$$\Delta H = (2 \times 33) - (9) \checkmark = (+)57 \text{ kJ mol}^{-1} \checkmark$$

common errors: $-57 \checkmark \times +24 \checkmark \times +75 \checkmark \times -24 \times \times$
[2]

(c) change more NO₂ / less N₂O₄ ✓

explanation equilibrium position —→ right or forwards / K₂ increases ✓

reaction is endothermic V

THIS ANSWER IS CONSEQUENTIAL ON SIGN OF THE ANSWER TO (i)

BUT, a candidate interpreting a '+' enthalpy change as 'exothermic' (or vice versa) will lose the 3rd mark but the 2 'logic marks' before are still consequentially available.

(d) 1 mol N₂O₄ reacts with 2 mol NaOH ✓
amount of NaOH required = 0.00930 mol ✓
volume NaOH = 1000 x 0.0093/0.300 = 31.0 cm³ / 0.0310 dm³ ✓

Common errors

3.1 x 10 x (where x is incorrect) \checkmark x

 $15.5 \text{ cm}^3 / 0.0155 \text{ dm}^3 \checkmark \checkmark \star$

1.55 x 10^x (where x is incorrect) ✓ xx

62 cm³ / 0.062 dm³ √ √ x

 6.2×10^{x} (where x is incorrect) $\checkmark ** [3]$

[Total: 11]

[3]