Required Practical 1 - Titrations

• This technique can be used to find:

Concentration Mr Formula Water of crystalisation

- To do this you react a certain volume of a solution with an unknown concentration with a solution of **known concentration**.
- The concentration of the known solution must be accurate and is known as a **standard solution**.

Making a standard solution – Making 250cm³ of a 0.1 mol dm⁻³ solution of NaOH

• Weigh a known mass (number of moles) out in a weighing boat recording its mass to the number of decimal places on the balance.

$$n = C \times V (dm^3) (250/1000 = 0.25)$$
 $m = n \times Mr$

$$n = 0.1 \times 0.25$$
 $m = 0.025 \times 40$

$$n = 0.025 \text{ moles}$$
 $m = 1.00g$

• Transfer to a beaker and reweigh the weighing boat (as there may be some left in the weighing boat). The difference is the **precise** mass added to a beaker:

Mass of weighing boat + calculated mass NaOH	2.62g
Mass of weighing boat	1.63g
Mass of NaOH dissolved	0.99g

- Dissolve in 100cm³ of distilled water and stir with a glass rod.
- Using a funnel, pour into a volumetric flask.
- Use the wash bottle to wash beaker, funnel and glass rod into the volumetric flask.
- Fill the volumetric flask with distilled water so the meniscus sits on the line.
- Stopper the flask and invert several times to ensure mixing.
- Now calculate the exact concentration:

$$\begin{array}{ccc}
n & = & \underline{m} & & C & = & \underline{n} \\
Mr & & & V
\end{array}$$

$$n = 0.99$$
 $C = 0.02475$ 0.25

$$n = 0.02475 \text{ moles}$$
 $C = 0.099 \text{ mol dm}^{-3}$

Carrying out a titration:

- Using moles and reacting ratios, you can calculate the concentration of a solution.
- The unknown goes in the conical flask and the known goes in the burette
- The only requirement is that you can tell when one solution has completely reacted with the other.
- Between acids and alkalis, we use indicators to let us know when the resulting solution is neutral.
- An indicator will change colour at the 'end point' (neutral).
- · Common indicators are:

Indicator	Acidic colour	Base colour	End point colour	
Methyl orange	Red	Yellow	Orange	
Phenylphthalein	colourless	Pink	Pale pink	

Technique/procedure

Example – finding an unknown concentration of NaOH using 0.10 moldm⁻³ H₂SO₄

- 1) Rinse the burette with sulphuric acid, H₂SO₄.
- 2) Fill the burette to the graduation mark ensuring the air is removed from the tap.
- 3) Rinse a pipette with sodium hydroxide, NaOH fill and transfer 25 cm³ to a clean, dry conical flask.
- 4) Add 2-3 drops of indicator.
- 5) Run the acid into the alkali and stop when the colour changes. This is your 'trial'.
- 6) Record the burette readings to 2dp ending 0 / 5
- 7) Repeat the titration until you get **2 concordant** results
- 8) Calculate the mean titre to 2dp.

Record results in a table like the one below:

	Trial	1	2	3
Final burette reading /cm³				
Initial burette reading /cm³				
Titre /cm ³				
Mean Titre 2dp /cm ³			1	1

A) Aqueous solution / mole calculation – example

In a titration 0.01M sulphuric acid was added to 25cm³ of sodium hydroxide. Calculate the concentration of the sodium hydroxide given the following results:

	Trial	1	2		
Final burette reading /cm ³	22.3	21.8	21.7		
Initial burette reading /cm ³	0.00	0.00	0.00		
Titre /cm ³	22.3	21.8	21.7		
Mean Titre 2dp /cm ³	21.75				

1 Write a balanced equation

$$H_2SO_{4(aq)}$$
 + $2NaOH_{(aq)}$ \rightarrow $Na_2SO_{4(aq)}$ + $H_2O_{(I)}$

2 Calculate the number of moles of H₂SO₄ added from the burette

n of
$$H_2SO_4 = C \times V$$

n of $H_2SO_4 = 0.01 \times 0.02175$
n of $H_2SO_4 = 2.175 \times 10^{-4}$

3 Use the ratio to work out the number of moles of NaOH in the conical flask

$$H_2SO_4$$
: NaOH 1: 2
n of NaOH = 2.175 x 10^{-4} x 2
n of NaOH = 4.35 x 10^{-4}

4 Calculate the concentration of NaOH

$$C = \frac{4.35 \times 10^{-4}}{0.025}$$

$$C = 0.0174 \text{ moldm}^{-3}$$

TIP:

Mass, gas and aqueous solution formulas may be used in a combination of ways in these reacting mole calculations

The format remains the same – a starting point – an end point, in the balanced equation

Required Practical 2 – Measurement of an enthalpy change

Hess's Law can be used to find an enthalpy change that cannot be measured directly:

Measuring ΔH_1 and ΔH_2 directly:

- 1) Weigh 3.90 4.10 of anhydrous copper sulphate in a dry stoppered weighing bottle.
- 2) Place 25cm³ of water into a polystyrene cup and record its initial temperature, t=0

- 3) Record the temperature for 3 minutes.
- 4) On the 4th minute add the anhydrous copper sulphate but do not record the temperature.
- 5) Stir continuously.
- 6) 5 15 minutes the temperature is recorded.
- 7) Re weigh the stoppered flask to determine the actually mass of anhydrous copper sulphate added.
- 8) Plot a graph (as shown above)
- 9) The points are extrapolated to the 4 minute mark.
- 10) ΔT is determined from the graph by reading off the Y axis.

Repeat the experiment for hydrated copper sulphate except:

- 1) Use between 6.20 6.30g of hydrated copper sulphate
- 2) Use 24cm³ of water. The waters of crystallisation will make the volume up to 25cm³

Recording results:

	ΔH₁ Mass (g) 2dp	ΔH ₂ Mass (g) 2dp
Mass of sample and weighing bottle		
Mass of weighing bottle		
Mass of sample		

Time (mins)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ΔH ₁ Temp (°C)															
ΔH ₂ Temp (°C)															

Calculation

Step 1: The energy change, q:

$$q = m c \Delta T$$

• As **enthalpy** is in **Kj** mol⁻¹ and **q** is in j, convert the energy calculated by dividing by 1000).

Step 2: Calculate the number of moles used:

Moles =
$$\frac{\text{Mass}}{\text{Mr}}$$
 or $C \times V (dm^3)$

Step 3: Calculate the enthalpy, ΔH :

Enthalpy,
$$\Delta H = \frac{\text{Energy, q}}{\text{Moles}}$$

Step 4: Check you have the sign correct:

(-)ve for exothermic reactions

(+)ve for endothermic reactions

Use your answers to ΔH_1 and ΔH_2 to calculate ΔH_3 using Hess's law

Required Practical 3

Measuring reaction rates:

1) Precipitates

Measure the time taken for a precipitate to obscure a cross

$$Na_2S_2O_{3(aq)} + 2HCI_{(aq)} \rightarrow 2NaCI_{(aq)} + S_{(s)} + SO_{2(aq)} + H_2O_{(l)}$$

• Solid sulphur is made which will change the appearance:

Clear and colourless → Yellow solid

- As you cannot see through the yellow solid, a specific amount of sulphur will be made that will obscure a cross underneath on a piece of paper.
- This can be used to investigate the effect of temperature or concentration:

Temperature: Concentration:

Independent variable: Temperature Independent variable: Concentration

Dependent variable: Time Dependent variable: Time

Control variables: Concentrations, pressure Control variables: Temperature, pressure

Method

- Place 10 cm³ of 1.0 mol dm⁻³ hydrochloric acid into a boiling tube, place in a water bath until the desired temperature.
- Place 10 cm³ of 0.1 mol dm⁻³ sodium thiosulphate into a comical flask, place in a water bath until the desired temperature.
- Record the initial temperature then add the hydrochloric acid to the sodium thiosulphate starting the stop clock.
- When the cross is no longer visible, stop the clock and record the final temperature of the reaction mixture.
- Repeat the experiment at 5 different temperatures

Results

Initial temperature / °C	Final temperature / °C	Average Time for cross temperature / °C to disappear / s		Rate (1/t) / s ⁻¹
14	14		115	
21	19		75	
23	23		65	
29	29		48	
41	39		26	
51	49		15	

Analysis

- Plot a graph of average temperature vs rate (1/t)
- Axes **must** be labelled with units
- Mark all points with a x
- You must use more than half of the graph paper provided

Analysis questions

- · What is the independent variable?
- What is the dependent variable?
- What is the relationship between rate and temperature? Explain your answer using collision theory:
- Sketch a **labelled** Maxwell Boltzmann distribution curve showing how an increase in temperature affect the rate of a reaction:

 Use your Maxwell Boltzmann distribution curves above to explain the effect of temperature on rate:

2) Change in mass

Record the time as a reaction that loses mass proceeds:

$$Na_2CO_{3(aq)} + 2HCI_{(aq)} \rightarrow 2NaCI_{(aq)} + CO_{2(g)} + H_2O_{(I)}$$

- Carbon dioxide is made which escapes the reaction mixture.
- This will change the mass on the balance.
- As the reaction proceeds, the concentration of the acid decreases.
- The rate at which the mass is lost will be proportional to the concentration of the acid.
- As the reaction proceeds, the rate therefore will slow down.

 $H_{2(g)}$

This can be used to investigate the effect of temperature or concentration.

3) Gas volumes

Record the time as a reaction that loses mass proceeds:

2HCI_(aq)

- Carbon dioxide is made which escapes the reaction mixture.
- This can be collected in a gas syringe.
- As the reaction proceeds, the concentration of the acid decreases.
- The rate at which the gas is collected will be proportional to the concentration of the acid.
- As the reaction proceeds, the rate therefore will slow down.
- This can be used to investigate the effect of temperature or concentration:

Questions:

- 1) The Maxwell Boltzmann distribution shows the distribution of energies of molecules in a gas.
 - a. In the space below sketch the Maxwell Boltzmann distribution. Add the activation energy and clearly label the axis.

- b. Outline 2 of the key features of the Maxwell Boltzmann distribution curve:
- c. Draw a second Maxwell Boltzmann distribution curve at a higher temperature. **Use the completed diagram** above to explain why an increase in temperature increases the rate of reaction:
- 2) The production of ammonia is an important industrial process. The reaction is shown below:

$$N_{2(g)}$$
 + $3H_{2(g)}$ \rightarrow $2NH_{3(g)}$ $\Delta H = -92.0 \text{ kj mol}^{-1}$

a. In the space below sketch the enthalpy profile diagram. Add and clearly label the axis, the activation energy and the enthalpy change.

- b. The reaction is catalysed using iron, Fe. Add the profile for this reaction, clearly labelling the activation energy when a catalyst is used
- c. The rate of reaction is also increased using pressure. Explain using collision theory how pressure increases the rate of a reaction

Required Practical 4 - Test for ions

Positive ions:

1) Test for Group 2 metal ions, M²⁺ - Flame tests

2) Test for ammonium ions, NH₄⁺:

Negative ions:

1) Test for sulphate ions, SO_4^{2-}

2) Test for hydroxide ions, OH

- Dip red litmus paper onto the solution.
- If it turns blue, hydroxide, OH⁻ are present.

3) Testing for Halide ions, X

- Add nitric acid to remove any other ions that may interfere with the test.
- Add silver nitrate, AgNO₃.
- The silver ions, Ag⁺
 combines with the Halide
 ions, X⁻ to form a silver
 halide precipitate
- Ammonia can be added as the different silver halides as they have different solubility's in ammonia.

Results:

Halide ion	Observations	With Ammonia	Solubility of the precipitate
CI -	White precipitate	Dissolves in dilute NH ₃ solution	Most soluble
Br -	Cream precipitate	Dissolves in concentrated NH ₃ solution	
1-	Yellow precipitate	Insoluble	Least soluble

4) Testing for carbonate ions, CO₃²-

• Add hydrochloric acid.

 $H_2O_{(1)}$

- It will fizz if carbonate present,
 CO₃²⁻.
- CO₂ gas is made.
 - CO₂ will turn limewater cloudy.

Required Practical 5 – Purification of a product

Dehydration of an alcohol

1) Heat and 1st distillation

- The heat for the reaction is provided from a distillation process.
- The reason that distillation is used as the source of heat is that the product can be distilled off as it forms.
- The product is usually in a water / acid / reactant mixture.

Intermolecular forces of the reaction mixture

Cyclohexanol	Water	Sulphuric acid	Cyclohexene	
H - Bonding	H - Bonding	H - Bonding	Van Der Waals	
Strong – High boiling point	Strong – High boiling point	Strong – High boiling point	Weak – Low boiling point	

- The alkene only has the weakest VDW forces of attraction it will evaporate 1st
- This allows the crude alkene to be collected as it is formed at its boiling point 83°C

2) Separation

- The crude cyclohexene will contain water soluble impurities that need separating from the alkene.
- The cyclohexene is transferred to a separating funnel.
- Water is added to the separating funnel and shaken to remove water soluble impurities from the cyclohexene and transfer them to the water.
- Allow to settle. The cyclohexene (hydrocarbon) is less dense than water and does not mix due to their different intermolecular forces.
- Run off the aqueous layer (waste)

3) Purification – 2nd distillation

- Pour the cyclohexene into a round bottom flask.
- Add CaCl₂ a drying agent. This removes any droplets of water trapped in the cyclohexene, allow 20 minutes for this.
- Any other (hydrocarbon based) impurities are removed from a 2nd distillation.
- Only the liquid around cyclohexene's boiling point is collected.
- This is the pure cyclohexene.

Required Practical 6 – Tests for functional groups

The following tests were carried out and the results recorded below:

Organic compound	Na added	Br ₂ water added	Tollens' reagent	K ₂ Cr ₂ O ₇ / H ₂ SO ₄	Na₂CO₃ added	NaOH / HNO ₃ / AgNO ₃
Α	-	-	Silver mirror	Orange → green	-	-
В	-	Orange → colourless	-	-	-	-
С	Fizzing	-	-	-	-	-
D	Fizzing	-	-	-	Fizzing	-
E	-	-	-	-	-	-
F	Fizzing	-	-	Orange → green	-	-
G	-	-	-	-	-	White precipitate

Compounds A – F are one of the following: Add the letter next to the compound

Carboxylic acid	Ketone	Alkene	Halogenoalkane	
Aldehyde	1° Alcohol	3° Alcohol		

Questions:

- 1) 2 organic compounds that are functional group isomers of each other have the molecular formula C_3H_6O . When Tollen's reagent was added, only one of them gave a silver precipitate. Identify and draw the structure of the 2 organic compounds. Explain your answer.
- 2) 3 organic liquids A,B and C are unknown. Upon chemical analysis the following results were obtained:
 - A: Turned $K_2Cr_2O_7 / H_2SO_4$ orange \rightarrow green and fizzed with Na
 - B: Turned K₂Cr₂O₇ / H₂SO₄ orange → green and produced a silver precipitate with Tollens' reagent
 - C: No change with K₂Cr₂O₇ / H₂SO₄. Fizzed with Na₂CO₃

Identify with reasons the functional groups present in A,B and C

- 3) 2 organic liquids X and Y are unknown. Upon chemical analysis the following results were obtained:
 - A: Did not fizz with Na but turned $K_2Cr_2O_7 / H_2SO_4$ orange \rightarrow green
 - B: Turned bromine water orange → colourless and fizzed with Na₂CO₃

Identify with reasons the functional groups present in X and Y

4) An organic compound was found to have the following composition by mass. Its mass spectra had a molecular ion peak of 74.

	С	Н	0
% by mass	64.86	13.51	21.62

a. Calculate the molecular formula of the organic compound.

- b. The organic compound was found to fizz when Na was added. What functional group must the compound have?
- c. Draw the 4 possible isomers that include the functional group identified in (b) and classify them.

- d. The organic compound was then refluxed with K₂Cr₂O₇ / H₂SO₄ and the oxidising mixture turned orange → green.
 What does the colour change tell you about the organic compound?
- e. The oxidation product was tested with Na₂CO₃ and there was no fizzing observed. What functional group is in the oxidation product? Draw and name the oxidation product.
- f. What does (e) tell you about the structure of the original organic compound? Draw and name the original organic compound.