Mechanisms

1) Free radical substitution – Alkane → halogenoalkane

Initiation:

Propagation:

$$CH_4$$
 + CI_{\bullet} \longrightarrow $\bullet CH_3$ + HCI
 $\bullet CH_3$ + CI_2 \longrightarrow CH_3CI + CI_{\bullet}

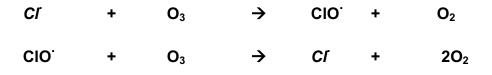
Termination:

$$2\text{Cl} \bullet \longrightarrow \text{Cl}_2$$

$$2 \bullet \text{CH}_3 \longrightarrow \text{CH}_3\text{CH}_3$$

$$\bullet \text{CH}_3 + \text{Cl} \bullet \longrightarrow \text{CH}_3\text{Cl}$$

Overall:


$$CH_4$$
 + Cl_2 \longrightarrow CH_3Cl + HCl

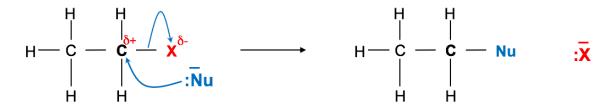
2) Ozone depletion

• UV light breaks the C – Cl bond releasing chlorine radical

 $CFCI_3F \rightarrow CCI_2F + CI$

 This chlorine radical catalyses the decomposition of ozone with the chlorine radical coming out unchanged (and available for more ozone decomposition).

Overall


$$2O_{3(g)}$$
 \rightarrow $3O_{2(g)}$

3) Nucleophilic substitution of halogenoalkanes

$$RCH_2X$$
 + : $\overline{N}u$ \longrightarrow RCH_2Nu + : \overline{X}

The mechanism:

X is a halogen

a) With aqueous hydroxide, OH Hydrolysis – forming alcohols

• This reaction converts a halogenoalkane to an alcohol

$$RCH_2CI$$
 + : OH \longrightarrow RCH_2OH + : CI

Reagents: Aqueous sodium hydroxide

Conditions: Reflux

Hydrolysis: Splitting a molecule apart by using water molecules

b) With ethanolic potassium cyanide, KCN - forming nitriles

- This reaction converts a halogenoalkane to an alkyl nitrile
- This is a key reaction in chemical synthesis as the carbon chain length is increased

$$RCH_2CI$$
 + : \overline{CN} \longrightarrow RCH_2CN + : \overline{CI}

Reagents: Potassium cyanide dissolved in ethanol

Conditions: Reflux

The mechanism:

c) With excess ethanolic ammonia, NH₃ – forming amines

• This reaction converts a halogenoalkane to amines

$$RCH_2CI$$
 + $2NH_3$ \longrightarrow RCH_2NH_2 + NH_4CI

Reagents: Excess ethanolic ammonia

Conditions: Reflux

The Mechanism

$$H - C - C - C - N - H$$

$$H - C - C - N - H$$

$$H - C - C - N - H$$

$$H - N - H$$

4) Elimination of halogenoalkanes

With ethanolic potassium hydroxide, reflux – forming alkenes

 RCH_2CH_2CI + : \overline{OH} \longrightarrow $RCH=CH_2$ + : \overline{CI} + H_2O

Reagents: KOH dissolved in ethanol

Conditions: Reflux

The mechanism:

Substitution vs elimination

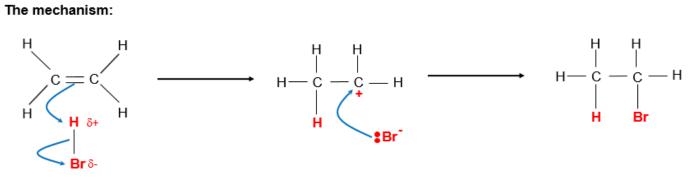
Substitution	Elimination
Aqueous conditions – substitution predominates	Ethanolic conditions – Elimination predominates
OH⁻ behaves as a nucleophile	OH behaves as a base (accepting a proton)
50 : 50 mixture of water : ethanol means substitution : elimination equally likely	

5) Electrophilic addition mechanism of the alkenes:

The mechanism

$$H = C = C$$

$$H = C$$


a) Addition of halogens - Br₂: Forming a dihalogenoalkane

The mechanism:

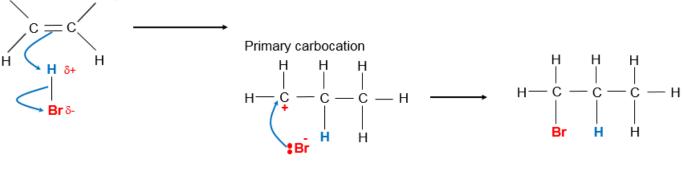
Chemical test for C=C / unsaturation:

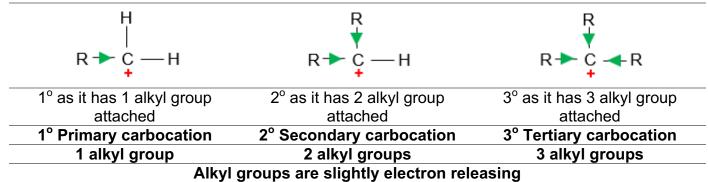
- Bromine water
- Orange to clear and colourless

b) Addition of hydrogen halides - HBr: Forming a halogenoalkane

c) Heating with H₂O / H₂SO₄: Forming an alcohol (in 2 steps)

• However this happens in 2 stages with the sulphuric acid behaving as a catalyst:


Step 1:


Step 2:

• The sulphuric acid is used up in step 1 but regenerated in step 2

d) Hydration of alkenes with H₂O / H₃PO₄ catalyst / 300°C / 60atm: Forming an alcohol

6) Addition to unsymmetrical alkenes: Markovnikov addition

As the number of alkyl groups increase there is an increase in the negative electrons

• This increases the stability of the carbocation

released to the positive charge

7) Dehydration of an alcohol – Elimination reaction

$$H - C - C - H \qquad \xrightarrow{H_2SO_4} \qquad H = C = C \qquad + \qquad H_2C$$

The mechanism:

- The catalyst is concentrated sulphuric acid, H₂SO₄
- The reaction requires heat

Unsymmetrical alcohols

Dehydration of unsymmetrical alcohols gives rise to 2 alkenes, position isomers

The dehydration using 'B' would also give E/Z isomerism

8) Nucleophilic addition reactions of Aldehydes / Ketones

Aldehyde / Ketone

a) Reduction to alcohols

Conditions: NaBH₄ - a source of hydride ions, H⁻

$$R = \begin{pmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

b) To form Hydroxynitriles

Conditions: KCN followed by dilute acid (HCI) – This produces HCN

R — C — C
$$\Longrightarrow$$
 N

CH₃CHO_(aq) + HCN_(aq) \rightarrow CH₃CH(OH)CN_(aq)

CN is the nucleophile and is attracted to the δ + carbon in the carbonyl group.

$$R \xrightarrow{\delta + C} R' \xrightarrow{O} R \xrightarrow{O} R \xrightarrow{O} R$$

$$R \xrightarrow{O} R \xrightarrow{O} R \xrightarrow{O} R'$$

$$R \xrightarrow{O} R \xrightarrow{O}$$

Aldehyde / Ketone

Hydroxynitrile

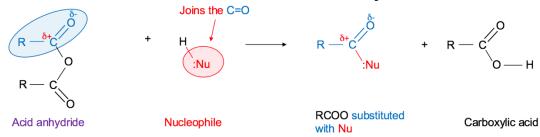
- In practise, KCN is added.
- This is because HCN is a weak acid (partially dissociates) giving a low [CN]
- Can produce optical isomers

Nucleophilic addition - elimination reaction of the acyl chlorides

Joins the C=O
$$R \xrightarrow{\delta^{+}} C I \delta^{-}$$

$$+ H \xrightarrow{(Nu)} R \xrightarrow{\delta^{+}} C I SUBSTITUTE With Nu Hydrogen chloride$$
Acyl chloride
$$CI \text{ substituted with Nu Hydrogen chloride}$$

The mechanism:

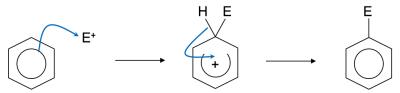

1) With water:

2) With alcohol:

3) With ammonia:


4) With primary amines:

Nucleophilic addition - elimination reaction of the acid anhydrides



Summary - Carboxylic acid / derivative mechanisms

• The mechanism Is not required but they **all** follow the general mechanism:

Reactions of benzene – Electrophilic substitution

1) Nitration:

Reagents and conditions:

Concentrated nitric acid and concentrated sulphuric acid (catalyst) / Reflux at 55°C

Reaction:

a) Generation of the electrophile:

$$HNO_3$$
 + H_2SO_4 \rightarrow NO_2^+ + HSO_4^- + H_2O

b) Electrophilic Substitution Steps

$$\stackrel{\dagger}{\text{NO}_2}$$
 $\stackrel{\dagger}{\text{H}}$ $\stackrel{\bullet}{\text{NO}_2}$ $\stackrel{\bullet}{\text{H}^+}$

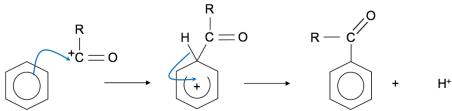
c) Regeneration of the catalyst

$$H^{+}$$
 + HSO_{4}^{-} \rightarrow $H_{2}SO_{4}$

2) Fiedel - Crafts - Acylation:

Reagents and conditions:

Acyl chloride and AlCl₃ (Halogen carrier / catalyst) / Heat under reflux


Reaction:

a) Generation of the electrophile:

Carbocation is the electrophile

b) Electrophilic Substitution Steps

c) Regeneration of the catalyst

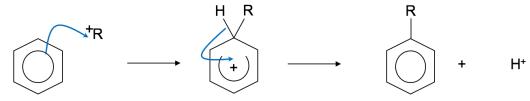
$$H^+$$
 + $AICI_4^ \rightarrow$ $AICI_3$ + HCI

Extension – 3 and 4 are not in the specification.

3) Fiedel - Crafts - Alkylation:

Reagents and conditions:

Halogenoalkane, RCI and AlCI₃ (Halogen carrier / catalyst) / Heat under reflux


Reaction:

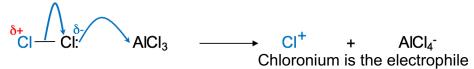
a) Generation of the electrophile:

Carbocation is the electrophile

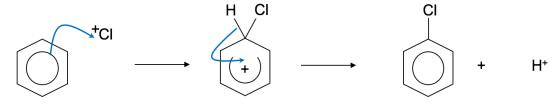
b) Electrophilic Substitution Steps

c) Regeneration of the catalyst

$$H^+$$
 + $AICI_4^ \rightarrow$ $AICI_3$ + HCI


4) Halogenation:

Reagents and conditions:

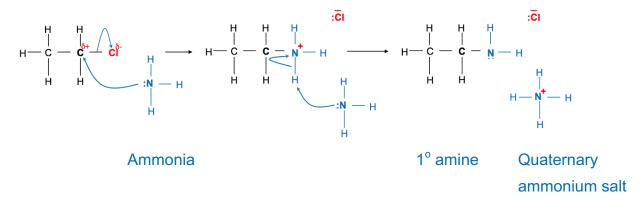

Halogen, Cl₂ and AlCl₃ (Halogen carrier / catalyst) / Heat under reflux

Reaction:

a) Generation of the electrophile:

b) Electrophilic Substitution Steps

c) Regeneration of the catalyst


$$H^{+}$$
 + $AICI_{4}^{-}$ \rightarrow $AICI_{3}$ + HCI

Nucleophilic substitution reactions involving amines:

1) With ammonia, NH₃, to form 1° amines: Year 1, recap: The nucleophilic substitution

Reagents: Excess ethanolic ammonia

Conditions: Reflux

2) With 1° amines, RNH₂, to form 2° amines, R₂NH:

$$H = \begin{pmatrix} \mathbf{C} \\ \mathbf$$

3) With 2° amines, R₂NH, to form 3° amines, R₃N:

$$\begin{array}{c} \text{TCI} \\ \text{H} \\ \text{C} \\$$

4) With 3° amines, R_3N , to form quartenary ammonium salt, R_4N^{+} :

3° Amine Quaternary ammonium salt

Summary:

1° Amine 2° Amine 3° Amine 4° Amine Ammonia