Inorganic Chemistry – Standard answers

2.1 Periodicity

Atomic radius

a) Across a Period, atomic radius decreases:

Shells: Same number of electron shells
 Shielding: Similar amount of shielding
 Protons: Number of protons increases

Attraction: Attraction is greater so shells move in slightly.

Energy: More energy required.

b) Down a Group, atomic radius increases:

• Shells: More electron shells

Shielding: More shielding

Protons: Number of protons increases

Attraction: Attraction is less as shells and shielding outweigh number of protons.

Energy: Less energy required.

1st ionisation energies

a) Across a Period, 1st ionisation energies increases:

Shells: Same number of electron shells
 Shielding: Similar amount of shielding
 Protons: Number of protons increases

Attraction: Attraction is greater so shells move in slightly.

Energy: More energy required.

b) Down a Group, 1st ionisation energies decreases:

Shells: More electron shells
 Shielding: More shielding

Protons: Number of protons increases

Attraction: Attraction is less as shells and shielding outweigh number of protons.

Energy: Less energy required.

Size of ionic radius

a) Positive ions:

- Are smaller due to fewer electrons being attracted by the same number of protons attraction increases
- With Group 1-3 metals, they also lose their outer shell electrons.

b) Negative ions:

 Are larger due to more electrons being attracted by the same number of protons – attraction decreases

Melting and boiling points across a Period

General trends:

- a) Increase in Boiling point from Gp 1 4.
- b) Sharp drop from Gp 4 5
- c) Low Boiling points for Gp 5 0

Metallic → Giant Molecular → Molecular → Atomic

a) Metallic bonding - Gp 1 - 3

- Increase in charge on metal ion
- Increase in the number of delocalised outer electrons
- Increased attraction between ions and electrons
- More energy required

b) Giant covalent structures - Gp 4

- Many strong covalent bonds must be broken
- Requires lots of energy to do this

c) Simple molecular / Atomic - Groups 5 – 0 – Van der Waals

- Larger molecule / atom
- Increases number of electrons
- Stronger VDW force of attraction between molecules / atoms
- More energy required to overcome
- S₈ is bigger than P₄ which is bigger than Cl₂
- S₈ has more electrons than P₄ which has more electrons than Cl₂
- S₈ has stronger VDW than P₄ which has stronger VDW than Cl₂

Periodicity summary:

Period 2	Li	Be	В	С	N ₂	O ₂	F ₂	He
Period 3	Na	Mg	Al	Si	P ₄	S ₈	Cl ₂	Ar
Atomic radius	Decreases							
1 st Ionisation energy	Increases →							
Electronegativity	Increases							
Structure and bonding	Giant metallic			Giant covalent	Simple molecular / atomic structures			
Forces	Strong electrostatic forces of attraction between positive ions and negative delocalised electrons		Strong covalent bonds between atoms	weak VDW forces of attraction between molecules / atoms				
Melting / Boiling points	Increases		Highest		Dec	reases		

2.1 Group 2 - The alkaline earth metals

Test for Group 2 metal ions,

Reactivity of group 2 - Increases down the Group

Electrons are lost

Shells: More electron shellsShielding: More shielding

• Protons: Number of protons increases

• Attraction: Attraction is **less** as shells and shielding outweigh number of protons.

Energy: Less energy required.

Electrons are lost more easily:

Melting point – decreases down the group:

- As you go down Group 2 the ionic radius increases
- The 2+ charge from the nucleus is **further away** from the delocalised electrons
- Attraction between ions and electrons are therefore weaker
- Energy required is less
- Mg's unusually low melting point comes from the different arrangement of the ions in the crystal structure.

Solubility of the Group 2 hydroxides and sulphates:

Uses of Group 2 compounds:

- a) Barium meals X Rays:
- Insoluble barium sulphate, BaSO₄, does not allow X rays to pass through.
- b) Extraction of Titanium:

$$TiCl_{4(g)}$$
 + $2Mg_{(l)}$ \rightarrow $Ti_{(s)}$ + $2MgCl_{2(l)}$

c) Removal of SO₂ from flue gases:

- d) Neutralising acids:
- Ca(OH)₂ is used to neutralise acidic soils.
- Mg(OH)₂ is used to neutralise excess stomach acids.

2.2 Group 7 – The halogens

Reactivity of halogens – Decreases down the Group:

Electrons are gained

• Shells: More electron shells

• Shielding: More shielding

• Protons: Number of protons increases

• Attraction: Attraction is **less** as shells and shielding outweigh number of protons.

• Energy: Less energy required.

Electrons are gained less easily

Oxidising power of the halogens – Decreases down the Group:

Oxidising agents are themselves reduced – Gains electrons

• Shells: More electron shells

• Shielding: More shielding

• Protons: Number of protons increases

• Attraction: Attraction is **less** as shells and shielding outweigh number of protons.

• Energy: Less energy required.

Electrons are gained less easily

Displacement reactions

Cl ⁻ (aq)	Br _(aq)	l' _(aq)
	Orange	Brown
	Dark orange	Purple
No reaction		Brown
Stays orange /		Purple
dark orange		
No reaction	No reaction	
Stays brown /	Stays Brown /	
purple	purple	
	No reaction Stays orange / dark orange No reaction Stays brown /	Orange Dark orange No reaction Stays orange / dark orange No reaction Stays brown / Stays Brown /

eg $Cl_{2(aq)}$ + $2Br_{(aq)}$ \rightarrow $2Cl_{(aq)}$ + $Br_{2(aq)}$

Halides as reducing power – increases

Reducing agents are themselves oxidised Electrons are lost

Shells: More electron shells
 Shielding: More shielding
 Protons: Number of protons

increases

• Attraction: Attraction between nucleus and electron to be lost is less

• Energy: Less energy required.

Electrons are lost more easily

 $I^{-}_{(aq)}$ \rightarrow e^{-} + $\frac{1}{2}I_{2(aq)}$

Reduction products of Sulphuric acid, H₂SO₄:

Name	Sulphuric acid	Sulphur dioxide	Sulphur	Hydrogen sulphate			
Formula	H ₂ SO ₄	SO ₂	S	H₂S			
Oxidation number	+6	+4	0	-2			
Test for sulphur product	White fumes with NH₃ gas / Damp blue litmus paper terns red	Dichromate paper turns orange → green	Yellow solid	Lead ethanoate paper turns black			
H₂SO₄ bed	As the power of the Reducing agent increases H ₂ SO ₄ becomes more reduced - Therefore the halide must be oxidised to the halogen						
How far	F and Cl						
		Br and I					
			→	ľ			

Reactions:

1) All Halides do the following – H₂SO₄ is not reduced:

NaX +
$$H_2SO_4$$
 \rightarrow NaHSO $_4$ + HX -1 +6 -1 White fumes

2) The HX – Bromide and lodide will reduce H₂SO₄ to SO₂

2HX +
$$H_2SO_4$$
 \rightarrow X_2 + SO_2 + $2H_2O$
-1 +6 0 +4

Brown / purple fumes

3) The HX –lodide will also reduce H₂SO₄ to H₂S (and S)

6HX +
$$H_2SO_4$$
 \rightarrow $3X_2$ + S + $4H_2O$

-1 +6 0 0

Purple fumes

8HX + H_2SO_4 \rightarrow $4X_2$ + H_2S + $4H_2O$

-1 -2 Purple fumes

Summary of Oxidation / Reduction of the Halogens and the Halides

Testing for Halide ions – Using silver nitrate

Halide ion	Observations	With Ammor	nia		Solubility of the precipitate	
CI	White precipitate	Dissolves in o	dilute NH ₃ so	lution	Most soluble	
Br -	Cream precipitate	Dissolves in o	concentrated	NH ₃ sol	ution	
1-	Yellow precipitate	Insoluble			Least soluble	
	eg	CI -(aq) +	Ag ⁺ _(aq)	\rightarrow	$AgCI_{(s)}$	

Disproportionation reactions

a) Chlorine and cold NaOH – Bleach:

$$CI_{2(aq)}$$
 + $2NaOH_{(aq)}$ \rightarrow $NaCI_{(aq)}$ + $NaCIO_{(aq)}$ + $H_2O_{(I)}$ $+1$

b) Chlorine and drinking water:

$$CI_{2(aq)}$$
 + $H_2O_{(1)}$ \rightarrow $HCI_{(aq)}$ + $HCIO_{(aq)}$ -1 +1

c) Further reactions - In sunlight HCIO decomposes further:

$$HCIO_{(aq)} \rightarrow HCI_{(aq)} + \frac{1}{2}O_{2(aq)}$$

Or

$$\frac{1}{2}CI_{2(aq)}$$
 + $H_2O_{(I)}$ \rightarrow $HCI_{(aq)}$ + $\frac{1}{2}O_{2(aq)}$

Why does the toxicity not stop chlorine being added to drinking water?

• The benefit of chlorine killing harmful bacteria outweighs the risk of its toxicity

2.4 Period 3

Periodicity:

The repeating trends in physical and chemical properties of elements as you go across the Periodic Table

1) Reactions of Na and Mg with water:

Metal	+	Water	\rightarrow	Metal hydroxide	+	Hydrogen
2Na _(s)	+	2H ₂ O _(I)	\rightarrow	2NaOH _(aq) + +1 Strong alkali	$H_{2(g)}$	
$Mg_{(s)}$	+	2H ₂ O _(I)	\rightarrow	Mg(OH) _{2(aq)} + +2 Weak alkali	$H_{2(g)}$	

• Mg reacts with **steam** slightly differently:

2) Reactions with oxygen:

$$2Na_{(s)} \\ 0 \\ + \frac{1}{2}O_{2(g)} \\ \rightarrow Na_2O_{(s)} \\ + 1 \\ Vigorous \\ Vigorous \\ Vigorous \\ White flame / white solid \\ Vigorous \\ White flame / white solid \\ Vigorous \\ Vigo$$

• SO₂ can form SO₃ in the presence of **V**₂**O**₅ catalyst and excess oxygen:

3) Reactions of the oxides with water:

➤ Ionic oxides of metals form alkaline solutions, OH (aq)

$$Na_2O_{(s)}$$
 + $H_2O_{(l)}$ \rightarrow $2NaOH_{(aq)}$ Soluble pH 12 - 14 $MgO_{(s)}$ + $H_2O_{(l)}$ \rightarrow $Mg(OH)_{2(aq)}$ Sparingly Soluble pH 9 - 10

> Covalent oxides of non - metals form acidic solutions, H⁺(aq)

$$P_4O_{10(s)}$$
 + $6H_2O_{(l)}$ \rightarrow $4H_3PO_{4(aq)}$ Phosphoric (IV) acid $SO_{2(g)}$ + $H_2O_{(l)}$ \rightarrow $H_2SO_{3(aq)}$ Sulphuric (IV) acid $SO_{3(g)}$ + $H_2O_{(l)}$ \rightarrow $H_2SO_{4(aq)}$ Sulphuric (VI) acid $Al_2O_{3(s)}$ Is insoluble in water - Amphoteric $SiO_{2(s)}$ Is insoluble in water - Will react with bases, therefore classed as acidic.

Amphoteric

Amphoteric:

A substance that has both acidic and basic properties

Summary of the oxides with water:

4) Reactions of the oxides with acids / bases:

Alkaline oxides:

$$Na_2O_{(s)} + 2HCI_{(aq)} \rightarrow 2NaCI_{(aq)} + H_2O_{(l)}$$
 $MgO_{(s)} + 2HCI_{(aq)} \rightarrow MgCI_{2(aq)} + H_2O_{(l)}$
 $AI_2O_{3(s)} + 6HCI_{(aq)} \rightarrow 2AICI_{3(aq)} + 3H_2O_{(l)}$ *Amphoteric

*Tip:

- Think of the oxides reacting with the water / aq to form the hydroxides.
- The hydroxides then react with the acids forming salt and water.

> Acidic oxides:

*Tip:

- Think of the oxides reacting with the water / aq to form the acids.
- The acids then react with the metal hydroxides forming salt and water.

*Tip:

- You would be expected to balance these with any acid or base
- It is worth learning the unusual compounds formed and balancing accordingly ie NaAl(OH)₄ and Na₂SiO₃.

2.5 Transition metals

Transition element:

A metal that that can form one or more stable ions with an incomplete d sub-level

- Chromium and Copper fills differently
- A half filled or full d sub shell offers more stability than a full s sub shell.
- The 4s subshell fills first but also empties first when forming ions

Complex ion:

A central metal ion surrounded by ligands

Ligand:

A molecule or ion that forms a dative covalent bond with a central metal ion by donating a pair of electrons

Dative covalent bond (co-ordinate bond)

A covalent bond where the pair of electrons have been donated by the same atom / molecule

Co-ordination number:

Is the number of dative (co-ordinate) bonds to the central metal ion

Bidentate Ligand:

A molecule or ion that forms 2 dative covalent bond with a central metal ion

Multidentate Ligand:

A molecule or ion that forms more than 2 dative covalent bond with a central metal ion

Shapes of complex ions:

Stereoisomerism:

A Molecule with the same structural formula but its atoms are arranged differently in space

Optical isomer:

These are non superimposable mirror images

Coloured ions:

- Absorb specific frequency of light depending on ΔE in the energy levels of the d orbitals
- All other frequencies are transmitted.

$$\Delta E = Energy absorbed (j)$$

$$\hbar = Plank's constant (6.63 \times 10^{-34} js)$$

$$\nu = c/\lambda$$

$$\nu = Frequency of light (Hz)$$

$$c = Speed of light (3 \times 10^8 ms^{-1})$$

$$\lambda = Wavelength of light (m)$$

- Any changes in the following will alter the size of ΔE between the d orbitals:
 - Oxidation states
 - Co-ordination number
 - > Ligands
- Therefore, the frequency of the light required to promote the electron changes.
- As a different frequency is absorbed, the transmitted colours will be different.

Ligand substitution reactions changing shape / coordination number:

- If ligands have a similar size, the co-ordination number remains the same: NH₃ and H₂O.
- With larger ligands, the co-ordination number decreases: Cl⁻ is larger than NH₃ and H₂O.

Partial substitution: Copper (II) ions and ammonia, NH₃

$$\left[Cu(H_{2}O)_{6}\right]^{2+}_{(aq)} \quad + \quad 4NH_{3 \, (aq)} \qquad = \quad \left[Cu(NH_{3})_{4}(H_{2}O)_{2}\right]^{2+}_{(aq)} \quad + \quad 4H_{2}O_{(I)}$$

Colour: Pale blue Deep blue

Shape: Octahedral Octahedral (elongated)

Note: When NH₃ is initially added a precipitate is seen before the ligand substitution reaction.

Haemoglobin and ligand substitution

Lungs:

- In the lungs the [O₂] is high therefore H₂O is substituted for O₂
- The O₂ is exchanged for H₂O and transported back to the lungs.
- Also forms a complex with CO₂, transporting CO₂ to the lungs.

Carbon monoxide - the silent killer

- CO however forms a stronger dative covalent bond.
- The CO cannot be removed.
- That haemoglobin is now useless.
- This reaction is a simple **ligand substitution reaction** where the CO complex is more stable:

Complex ion stability:

• Ligand substitution reactions are mostly easily reversible – Le Chatelier's Principle

1) Enthalpy: Dative covalent bond strength:

$$[Fe(H_2O)_6]^{3+}_{(aq)} + 6CN^{-}_{(aq)} \rightarrow [Fe(CN)_6]^{3-}_{(aq)} + 6H_2O_{(l)}$$

• The CN⁻ ligand forms a stronger dative covalent bond making it stable and hard to reverse.

2) Multidentate ligand substitution:

$$[Cu(H_2O)_6]^{2+}_{(aq)} + 3NH_2CH_2CH_2NH_{2(aq)} \rightarrow [Cu(NH_2CH_2CH_2NH_2)_3]^{2+}_{aq)} + 6H_2O_{(l)}$$

Multidentate ligands are more stable than monodentate ligands and are hard to reverse.

The chelate effect:

a) Enthalpy

- Most ligands have similar bond strengths.
- This means it is not down to enthalpy:

b) Entropy

$$[Cu(H_{2}O)_{6}]^{2^{+}}{}_{(aq)} + 3NH_{2}CH_{2}CH_{2}NH_{2(aq)} \rightarrow [Cu(NH_{2}CH_{2}CH_{2}NH_{2})_{3}]^{2^{+}}{}_{aq)} + 6H_{2}O_{(l)}$$

$$\textbf{4 particles} \qquad \textbf{7 particles}$$

- Increase in entropy (disorder): 4→ 7 particles.
- As the enthalpy change is minimal, the feasibility of the reaction is down to entropy.

$$\Delta G = \Delta H - T\Delta S$$

Variable oxidation states

Formula	Colour
VO ₂ ⁺ (aq)	Yellow
VO ²⁺ (aq)	Blue
$V^{3+}_{(aq)}$	Green
$V^{2+}_{(aq)}$	Violet
	VO2 ⁺ (aq) VO ²⁺ (aq) V ³⁺ (aq)

• Vanadium (V) can be reduced all the way to vanadium (II) using acidified zinc:

REDOX potentials (electrode potentials)

The most negative E ^θ value	The most positive E ^θ value		
Releases electrons the best	 Gains electrons the best 		
Oxidised more easily	 Reduced more easily 		
Reducing agent	Oxidising agent		

Factors affecting REDOX potentials (electrode potentials):

1) Ligands:

- Different ligands will have stronger / weaker bonds with the metal ion.
- This affects its ability to gain / lose electrons and hence its REDOX potential.

2) pH:

$$2VO_{2}^{+}_{(aq)}$$
 + $4H_{(aq)}^{+}$ + $2e^{-}$ \Longrightarrow $2VO_{(aq)}^{2+}$ + $2H_{2}O_{(l)}$ $CrO_{4}^{2-}_{(aq)}$ + $4H_{2}O_{(l)}$ + $3e^{-}$ \Longrightarrow $Cr(OH)_{3(s)}$ + $5OH_{(aq)}^{-}$

- Generally, REDOX potentials become more positive in more acidic conditions:
 - > Adding more H⁺ ions move the equilibrium to the right.
 - > This increases the ions ability to accept electrons
 - Increasing its ability to be reduced.

Tollens' Reagent:

- Silver nitrate dissolved in ammonia solvent makes the complex ion: [Ag(NH₃)]⁺
- When added to aldehydes a silver solid is produced the silver ions are reduced

$$RCHO_{(aq)} + 2[Ag(NH_3)]^{+}_{(aq)} + 3OH^{-}_{(aq)} \rightarrow RCOO^{-}_{(aq)} + 2Ag_{(s)} + 4NH_{3(aq)} + 2H_2O_{(l)}$$

Redox titrations: Learn

1) MnO₄ and Fe²⁺

2) MnO_4^- and $C_2O_4^{2-}$

Transition metals as catalysts

Heterogeneous catalyst:

A catalyst that is in a different phase as the reactants.

The Contact process:

$$SO_{2(g)} + \frac{1}{2}O_{2(g)} \xrightarrow{V_2O_{5(s)}} SO_{3(g)}$$

1) The vanadium (V) oxide oxidises the SO₂ while it is itself reduced to vanadium (IV) oxide:

$$SO_2$$
 + V_2O_5 \longrightarrow SO_3 + V_2O_4 +4

2) The vanadium (IV) oxide is then oxidised back to vanadium (IV) oxide by the oxygen:

$$V_2O_2$$
 + V_2O_4 \longrightarrow V_2O_5 +5

• This can only happen because vanadium has variable oxidation states.

Solid supports: are used to increase surface area

Catalytic poisoning:

- Heterogeneous catalysts interact with reactants by adsorption:
- Impurities will also be adsorbed
- This blocks that particular site which reduces the area and amount of product made.

Example: Lead poisoning catalytic converters:

• Therefore, catalytic converters only run on unleaded petrol.

Example: Sulphur poisoning in the Haber process:

- Hydrogen is obtained from natural gas containing sulphur compounds as impurities.
- Sulphur forms iron sulphide and coats the iron catalyst.
- Purifying the reactants will increase the life of a catalyst.

Homogeneous catalyst:

A catalyst that is in the same phase as the reactants

Sulphuric acid in esterification

Transition metals as catalysts in the same phase are usually in the aqueous phase.

Fe²⁺ catalysed reaction between S₂O₈²⁻ and I⁻

• This reaction occurs very slowly due to 2 negative ions required to collide – repulsion.

$$S_2O_8^{2-}(aq) + 2I^{-}(aq) + 2SO_4^{2-}(aq)$$

Catalytic reactions:

$$S_2O_8^{2-}_{(aq)} + 2Fe^{2+}_{(aq)} \longrightarrow 2Fe^{3+}_{(aq)} + 2SO_4^{2-}_{(aq)}$$

$$2I_{(aq)}^- + 2Fe^{3+}_{(aq)} \longrightarrow 2Fe^{2+}_{(aq)} + I_{2(aq)}$$

- Each stage now involves a positive and negative ion.
- This can only happen because iron has variable oxidation states.

Mn²⁺ autocatalysis reaction between MnO₄⁻ and C₂O₄²⁻

- Thi 2 negative ions involved in the reaction The activation energy is high.
- Mn²⁺ catalyses the reaction when it is made:

$$2MnO_{4^{-}(aq)} + 16H^{+}_{(aq)} + 5C_{2}O_{4}^{2^{-}}_{(aq)} \longrightarrow 2Mn^{2^{+}}_{(aq)} + 8H_{2}O_{(l)} + 10CO_{2(q)}$$

Catalytic reactions:

$$4Mn^{2+}_{(aq)} + MnO_{4^{-}_{(aq)}} + 8H^{+}_{(aq)} \longrightarrow 5Mn^{3+}_{(aq)} + 4H_{2}O_{(l)}$$

$$2Mn^{3+}_{(aq)} + C_{2}O_{4}^{2-}_{(aq)} \longrightarrow 2Mn^{2+}_{(aq)} + 2CO_{2(g)}$$

How the rate changes:

- Each stage now involves a positive and negative ion.
- This can only happen because manganese has variable oxidation states.

2.6 transition metals:

Coloured solutions / precipitates

Metal ion	Formula of hexa-aqua ion / PPT	Solution / PPT colour
Fe ²⁺	[Fe(H ₂ O) ₆] ²⁺ / [Fe(H ₂ O) ₄ (OH) ₂]	Green sol'n / green ppt's
Cu ²⁺	[Cu(H ₂ O) ₆] ²⁺ / [Cu(H ₂ O) ₄ (OH) ₂]	Blue sol'n / pale blue ppt's
Fe ³⁺	[Fe(H ₂ O) ₆] ³⁺ / [Fe(H ₂ O) ₃ (OH) ₃]	Yellow sol'n / Brown ppt's
Al ³⁺	$[AI(H_2O)_6]^{3+}$ / $[AI(H_2O)_3(OH)_3]$	Colourless sol'n / White ppt's

Bronsted – Lowry acid:

Acids are proton donors

Hydrolysis:

Breaking of a bond with water

Proton donor:

- M³⁺ / M²⁺ is a **small highly charged ion**, M²⁺ therefore has a **high charge density**.
- This high charge density will polarise the water molecule.
- The O H bond breaks donating a proton donor, making the complex ion acidic:

Acidity of the metal aqua 2+ and 3+ ions:

- 3+ ions are smaller and more highly charged ion.
- Polarises water ligand more.
- More protons donated.
- Dissociates more.
- Larger Ka.
- Smaller pKa

Acid base reactions:

1) Reactions with hydroxides, OH-

M³⁺ ion: Consider the dissolved metal 3+ ion:

$$[M(H_2O)_6]^{3^+}{}_{(aq)} + OH^{-}{}_{(aq)} \longrightarrow [M(H_2O)_5(OH)]^{2^+}{}_{(aq)} + H_2O_{(I)}$$

$$[M(H_2O)_5(OH)]^{2^+}{}_{(aq)} + OH^{-}{}_{(aq)} \longrightarrow [M(H_2O)_4(OH)_2]^{+}{}_{(aq)} + H_2O_{(I)}$$

$$[M(H_2O)_4(OH)_2]^+_{(aq)} \quad + \qquad OH^-_{(aq)} \quad \Longrightarrow \qquad [M(H_2O)_3(OH)_3]_{(s)} \quad + \qquad H_2O_{(l)} \\ \quad \text{Precipitate}$$

- Adding more OH shifts the equilibrium to the right
- The product has neutral charge and therefore precipitates out of solution.

Simplifying to:

$$[M(H_2O)_6]^{3^+}{}_{(aq)} \quad + \quad 3OH^-{}_{(aq)} \quad \Longrightarrow \quad [M(H_2O)_3(OH)_3]_{(s)} \quad + \quad 3H_2O_{(l)}$$

$$Precipitate$$

$$[M(H_2O)_6]^{2^+}{}_{(aq)} \quad + \quad 2OH^-{}_{(aq)} \quad \Longrightarrow \quad [M(H_2O)_4(OH)_2]_{(s)} \quad + \quad 2H_2O_{(l)}$$

$$Precipitate$$

Adding acid will reverse these reactions.

2) Reactions with ammonia, NH₃:

Copper complex with excess NH₃, Ligand substitution follows:

3) Reactions with carbonates, CO₃²:

M³⁺ ion:

• Reacts in the same way as the hydroxide but, as it is more acidic, it reacts with the carbonate forming CO₂ and H₂O.

$$2[M(H_2O)_6]^{3+}_{(aq)} + 3CO_3^{2-}_{(aq)} = 2[M(H_2O)_3(OH)_3]_{(s)} + 3CO_{2(g)} + 3H_2O_{(l)}$$
Precipitate

M²⁺ ion:

- The M²⁺ is not acidic enough to produce CO₂ with the carbonates.
- They react to from the insoluble metal carbonate:

$$[M(H_{2}O)_{6}]^{2^{+}}{}_{(aq)} \quad + \quad CO_{3}^{2^{-}}{}_{(aq)} \quad \rightarrow \quad MCO_{3(s)} \quad + \quad 6H_{2}O_{(l)} \\ \qquad \qquad \qquad Precipitate$$

> Generally: Transition metal carbonates with an oxidation state of 3+ do not exist

The amphoteric nature of aluminium hydroxide, Al(OH)₃:

Amphoteric:

A species that can behave as an acid or a base

With an acid:

$$[AI(H_2O)_3(OH)_3] \hspace{1cm} + \hspace{1cm} 3H^+ \hspace{1cm} \rightarrow \hspace{1cm} [AI(H_2O)_6]^{3+}$$
 White precipitate colourless solution

With a base: