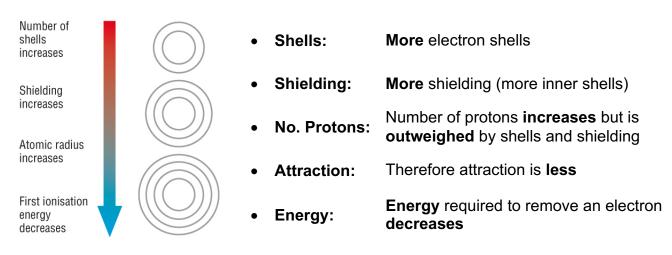
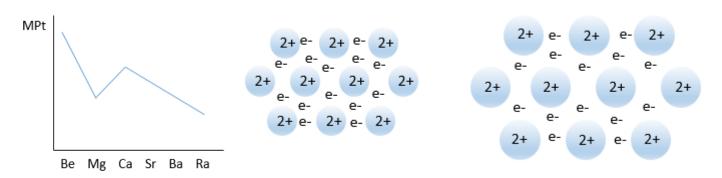
2.2 Group 2 - The alkaline earth metals


Atomic radius - Increases down the Group:

- Shells: More electron shells
- **Shielding: More** shielding (more inner shells)

Ionic radius - Smaller than atomic radius:

• 1 less shell: As 2e lost removing outer shell


First ionisation - Decreases down the Group:

Reactivity – Increases down the Group:

- All lose 2 electrons forming a 2+ ion when they react
- Ionisation energies decrease as you go down the group
- Electrons are lost more easily
- Reactivity increases as you go down the group

Melting point – decreases down the group:

- As you go down Group 2 the ionic radius increases
- The 2+ charge from the nucleus is **further away** from the delocalised electrons
- Attraction is therefore weaker
- Energy required is less
- Mg's unusually low melting point comes from the different arrangement of the ions in the crystal structure.

Reactions of the Group 2 elements:

How the Group 2 elements react:

- Group 2 metals are reactive and all **lose 2e** when they react.
- As you go down Group 2 they become more reactive.
- This is due to the **decrease in Ionisation energies** as you go down the group.


Reaction with water

• Group 2 metals react with water to give the hydroxide and hydrogen gas:

Magnesium with steam:

• Magnesium reacts with steam to give the oxide and hydrogen gas:

Solubility of the hydroxides and sulphates:

_____ charged negative ions tend to _____ in solubility as you go down the Group

charged negative ions tend to _____ in solubility as you go down the Group

Mg(OH)₂ is said to be sparingly soluble

BaSO₄ is insoluble

1) Hydroxides:

- As **solubility increases**, **more OH** ions are released.
- This makes a more alkaline solution.
- The **pH increases** down the Group

Testing the solubility of the Group 2 hydroxides:

• This is done by **adding** hydroxide ions, **OH**⁻ to a solution of the Group 2 ion, **M**²⁺:

$$M^{2+}_{(aq)}$$
 + $OH^{-}_{(aq)}$ \rightarrow $M(OH)_{2(s)}$

- As Mg(OH)₂ is sparingly soluble, a thick white precipitate is formed.
- As Ba(OH)₂ is more soluble, a thin white precipitate will be formed.

2) Sulphates:

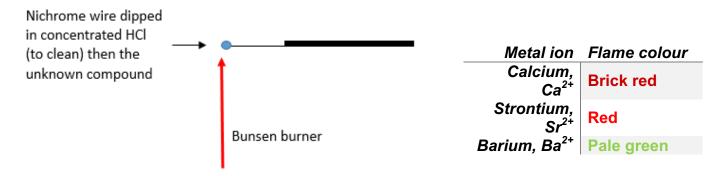
- Most are actually soluble ranging from sparingly soluble → soluble.
- Barium sulphate however is insoluble
- This therefore is used as the **chemical test** for the presence of **sulphate ions**, SO_4^{2-}

Testing the solubility of the Group 2 sulphates:

• This is done by **adding** sulphate ions, SO_4^{2-} or sulphuric acid, H_2SO_4 to a solution of the Group 2 ion, M^{2+} :

$$M^{2+}_{(aq)}$$
 + $SO_4^{2-}_{(aq)}$ \rightarrow $MSO_{4(s)}$

- As MgSO₄ is soluble, no precipitate will form.
- As BaSO₄ is insoluble, a white precipitate will be formed.


Test for sulphate ions, SO₄²⁻ (Part of Required practical 4)

- Add HCl first This reacts and removes any sulphites or carbonates that may also give a white precipitate.
- ➤ Add BaCl₂ solution: If sulphates are present, a **white precipitate of BaSO₄** will form.

$$Ba^{2+}_{(aq)}$$
 + $SO_4^{2-}_{(aq)}$ \rightarrow $BaSO_{4(s)}$

Test for Group 2 metal ions - Flame tests (Part of Required practical 4)

Uses of Group 2 compounds:

1) Barium meals – X – Rays:

- Barium sulphate, BaSO₄, does not allow X rays to pass through.
- Drinking a suspension of BaSO₄ coats the oesophagus, stomach or intestines (Barium meal)
- These now show up on an X Ray allowing you to see any problems.
- Other Barium compounds are poisonous.
- Other Group 2 metal compounds are soluble so cannot be used.

2) Extraction of Titanium:

- TiO₂ is converted to TiCl₄ by heating with carbon and chlorine
- TiCl₄ is then reduced by Mg:

$$TiCl4(g) + 2Mg(l) \rightarrow Ti(s) + 2MgCl2(l)$$
+4 0 0 +2

- Ti has been reduced from +4 → 0
- Mg has been oxidised from 0 → +2
- This makes magnesium a reducing agent

3) Removal of SO₂ from flue gases:

- SO₂ is produced burning fossil fuels to make electricity.
- This can be removed by reacting with an alkali such as CaO or CaCO₃ slurry (mixed with water)
- The process is called wet scrubbing:

4) Neutralising acids:

- Group 2 hydroxides are alkaline and therefore can be used to neutralise acids.
- Ca(OH)₂ is used to neutralise acidic soils.
- Mg(OH)₂ is used to neutralise excess stomach acids.