# 2.3 Group 7 – The Halogens

### Physical properties of the Halogens:

- The melting and boiling point of the halogens increases with atomic number due to increased van der Waals (from increased number of electrons).
- This can be seen by their physical states at room temperature.
- lodine sublimes to a purple vapour.





### **Atomic radius - Increases down the Group:**

Shells: More electron shells

• **Shielding:** More shielding (more inner shells)

#### **Ionic radius – Larger** than atomic radius:

• 1e added to shell: More electrons being attracted by same number of protons

#### First ionisation - Decreases down the Group:



- Shells: More electron shells
- Shielding: More shielding (more inner shells)
- No. Protons:

  Number of protons increases but is outweighed by shells and shielding
- Attraction: Therefore attraction is less
- Energy: Energy required to remove an electron

decreases

#### Reactivity - Decreases down the Group:



- All gain 1 electrons forming a 1- ion when they react.
- More shells
- More shielding
- Increase in number of protons is outweighed by shells and shielding
- Attraction to capture an electrons decreases down the Group
- Reactivity decreases as you go down the group

#### Trend in electronegativity decreases down the Group:

- Down the group there are more shells which outweigh the increase in number of protons.
- This reduces the halogen's ability to attract bonding pairs of electrons towards itself

#### Appearance and solubility of the Halogens

- The halogens are sparingly soluble in water VDW vs H bonding.
- As you go down the group they become less soluble (as VDW increases).
- They are however soluble in non polar solvents such as cyclohexane VDW vs VDW.
- The colours when dissolved in water and a non polar solvent are shown below:





| Halogen         | ın            | ∥ In        |  |
|-----------------|---------------|-------------|--|
| lialogen        | water         | cyclohexane |  |
| Cl <sub>2</sub> | Pale<br>green | Pale Green  |  |
| Br <sub>2</sub> | Orange        | Orange      |  |
| <b>l</b> 2      | Brown         | Violet      |  |

#### Halogens as oxidising agents:

½Cl<sub>2</sub> + e- → Cl-

- Gain of electrons is Reduction
- This means that whatever they react with must lose electrons and be Oxidised
- This makes the Halogens good Oxidising agents
- Reactivity decreases as you go down the Group.
- This means they gain their electrons less readily.
- This means as you go down Group 7, their oxidising power decreases.

# **Explanation:**



- All gain 1 electrons forming a 1- ion when they react.
- More shells
- More shielding
- Increase in number of protons is outweighed by shells and shielding
- Attraction to capture an electrons decreases down the Group
- Reactivity decreases as you go down the group
- The power of the Oxidising agent decreases as you go down the group

#### Displacement reactions of the halogens:

- Redox reactions show the Halogens ability to form ions reduces as you go down the Group.
- By competing the Halogens (Cl<sub>2</sub>, Br<sub>2</sub>, and I<sub>2</sub>) with the Halides (Cl<sub>-</sub>, Br<sub>-</sub>, and I<sub>-</sub>)
- Each Halogen is mixed with each of the Halides.
- The more reactive Halogen will oxidise and displace the Halide of a less reactive Halogen.
- Halogens are coloured in solution and in a hydrocarbon solvent such as cyclohexane.
- This can indicate whether a redox reaction has occurred:

|                     | CI-(aq)                    | Br-(aq)              | <b>I</b> -(aq) |
|---------------------|----------------------------|----------------------|----------------|
| Cl <sub>2(aq)</sub> |                            | Orange               | Brown          |
| Add cyclohexane     |                            | Dark orange          | Purple         |
| Br <sub>2(aq)</sub> | No reaction                |                      | Brown          |
| Add cyclohexane     | Stays orange / dark orange |                      | Purple         |
| <b>l</b> 2(aq)      | No reaction                | No reaction          |                |
| Add cyclohexane     | Stays brown / purple       | Stays Brown / purple |                |

### Interpretation:



# 1) Chlorine and Potassium bromide:

Full equation and colours:



# **Explanation:**

Chlorine is further up the Group than Bromine so is a stronger oxidising agent, so accepts electrons more readily than bromine

# 2) Chlorine and Potassium iodide:

Full equation and colours:

#### **Explanation:**

Chlorine is further up the Group than Iodine so is a stronger oxidising agent, so accepts electrons more readily than Iodine

# 3) Bromine and Potassium iodide:

Full equation and colours:

 $\rightarrow$ Br<sub>2(aq)</sub> 2KI(aq) 2KBr(aq) + + 12(aq) **Orange** Brown Purple (in cyclohexane) Ionic equation: 21 -(aq)  $\rightarrow$  $Br_{2(aq)}$ 2Br -(aq) + + 12(aq)

Half equations:

$$Br_{2(aq)}$$
 +  $2e$   $\rightarrow$   $2Br_{-(aq)}$   $\rightarrow$   $2e$  +  $I_{2(aq)}$ 

# **Explanation:**

Bromine is further up the Group than Iodine so is a stronger oxidising agent, so accepts electrons more readily than Iodine

### Halides as reducing agents:

I - (aq)  $\rightarrow$  e  $+ \frac{1}{2}I_{2(aq)}$ 

- Loss of electrons is Oxidation
- This means that whatever they react with must gain electrons and be Reduced
- This makes the Halides good Reducing agents
- As you go down the Group, electrons are lost more readily.
- This means as you go down Group 7, their reducing power increases.

### **Explanation:**



- All **lose 1 electrons forming a halogen** when they react.
- More shells
- More shielding
- Increase in number of protons is outweighed by shells and shielding
- Attraction to decreases down the Group
- Reactivity increases down the group
- The power of the Reducing agent increases as you go down the group

### Reactions of the Halides, X- with concentrated sulphuric acid, H2SO4

#### Reduction products of Sulphuric acid, H<sub>2</sub>SO<sub>4</sub>:

| Name                                  | Sulphuric acid                                                            | Sulphur dioxide                                              | Sulphur          | Hydrogen sulphate                                       |
|---------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|------------------|---------------------------------------------------------|
| Formula                               | H <sub>2</sub> SO <sub>4</sub>                                            | SO <sub>2</sub>                                              | S                | H <sub>2</sub> S                                        |
| Oxidation number                      | +6                                                                        | +4                                                           | 0                | -2                                                      |
| Test for sulphur product              | White fumes<br>(with NH₃ gas) /<br>Damp blue<br>litmus paper<br>terns red | Dichromate<br>paper turns<br>orange → green<br>Choking smell | Yellow solid     | Lead ethanoate<br>paper turns<br>black<br>Bad egg smell |
|                                       | As the pow                                                                | er of the Reducing                                           | agent increases  |                                                         |
| H <sub>2</sub> SO <sub>4</sub> become | s more reduced - T                                                        | herefore the halide                                          | must be oxidised | to the halogen                                          |
| How far                               | F- and CI-                                                                |                                                              |                  |                                                         |
|                                       |                                                                           | Br - and I-                                                  |                  |                                                         |

I-

# The Experiment: Reactions of the Halide ions, X- with Sulphuric acid, H2SO4

- Add 0.1g of the solid halide (eg KCl) to a test tube.
- Add 10 drops of concentrated sulphuric acid, H<sub>2</sub>SO<sub>4</sub> and warm if necessary.

#### **Observations:**

| Solid halide | Observations | Further observations                                               |
|--------------|--------------|--------------------------------------------------------------------|
| KCI          | White fumes  | No further reaction                                                |
| KBr          | White fumes  | Brown fumes (Br <sub>2</sub> ) and SO <sub>2</sub> (choking smell) |
| KI           | White fumes  | Purple fumes (I2), SO2 (choking smell), S and                      |
|              |              | H <sub>2</sub> S (bad egg smell)                                   |

### **Equations:**

1) With KCI / CI- / Chloride ion

CI- cannot reduce H<sub>2</sub>SO<sub>4</sub>, it is not a strong enough reducing agent

2) With KBr / Br- / Bromide ion

Br- can reduce H<sub>2</sub>SO<sub>4</sub> to SO<sub>2</sub> but no further as it is a stronger reducing agent:

Half equations: Construct and balance using electrons:

#### 3) With KI / I- / lodide ion

Nal + 
$$H_2SO_4$$
  $\rightarrow$  NaHSO $_4$  + HI  $_{-1}$   $_{+6}$   $_{+6}$   $_{-1}$  White fumes

I- can reduce  $H_2SO_4$  to  $SO_2$  / S /  $H_2S$  as it is the strongest reducing agent This happens in 3 simultaneous reactions:

#### a) To make SO<sub>2</sub>:

Half equations: Construct and balance using electrons:

2I- 
$$\rightarrow$$
 I<sub>2</sub> + 2e-
Purple fumes

H<sub>2</sub>SO<sub>4</sub> + 2H<sub>+</sub> + 2e-  $\rightarrow$  SO<sub>2</sub> + 2H<sub>2</sub>O
Choking smell

Overall:

2HI + H<sub>2</sub>SO<sub>4</sub>  $\rightarrow$  I<sub>2</sub> + SO<sub>2</sub> + 2H<sub>2</sub>O
Purple fumes Choking smell

#### b) To make S:

Half equations: Construct and balance using electrons:

2I- 
$$\rightarrow$$
 I<sub>2</sub> + 2e-  $\times$  3
Purple fumes

H<sub>2</sub>SO<sub>4</sub> + 6H<sub>+</sub> + 6e-  $\rightarrow$  S + 4H<sub>2</sub>O

Overall:

6HI + H<sub>2</sub>SO<sub>4</sub>  $\rightarrow$  3I<sub>2</sub> + S + 4H<sub>2</sub>O

Purple fumes

#### c) To make H<sub>2</sub>S:

Half equations: Construct and balance using electrons:

2I- 
$$\Rightarrow$$
 I<sub>2</sub> + 2e- x 4
Purple fumes

H<sub>2</sub>SO<sub>4</sub> + 8H<sub>+</sub> + 8e-  $\Rightarrow$  H<sub>2</sub>S + 4H<sub>2</sub>O
Bad egg smell

Overall:

8HI + H<sub>2</sub>SO<sub>4</sub>  $\Rightarrow$  4I<sub>2</sub> + H<sub>2</sub>S + 4H<sub>2</sub>O
Purple fumes Bad egg smell

**Summary of the reduction reactions of the Halides:** 

1) All Halides do the following – H<sub>2</sub>SO<sub>4</sub> is not reduced:

NaX + 
$$H_2SO_4$$
  $\rightarrow$  NaHSO $_4$  + HX 
-1 +6 +6 -1 
White fumes

2) The HX – Bromide and lodide will reduce H<sub>2</sub>SO<sub>4</sub> to SO<sub>2</sub>

2HX + 
$$H_2SO_4$$
  $\rightarrow$   $X_2$  +  $SO_2$  +  $2H_2O$ 
-1 +6 0 +4

Brown / purple fumes & Choking smell

3) The HX -lodide will also reduce H2SO4 to H2S (and S)

6HX + 
$$H_2SO_4$$
  $\Rightarrow$   $3X_2$  +  $S$  +  $4H_2O$ 

-1 +6 0 0

Purple fumes & Yellow solid

8HX +  $H_2SO_4$   $\Rightarrow$   $4X_2$  +  $H_2S$  +  $4H_2O$ 

-1 +6 0 -2

Purple fumes & Bad egg smell

**Summary of Oxidation / Reduction of the Halogens and the Halides** 



#### **Testing for Halide ions –** (Part of Required Practical 4)

- Dissolve a small amount of Halide compound in water
- Add **nitric acid** to **remove any other ions** that may interfere with the test such as carbonates.
- Add a few drops of silver nitrate, AgNO<sub>3</sub>.
- The silver ions, Ag+ combines with the Halide ions, X- to form a silver halide precipitate
- The silver halide precipitates are coloured depending upon the halide present:



- Sometimes it is difficult to judge the exact colour.
- Ammonia can be added as the different silver halides as they have different solubility's in ammonia.
- The solubility of the precipitates decreases down the group.

#### **Results:**

| Halide<br>ion | Observations       | With Ammonia                                       | Solubility of the precipitate |
|---------------|--------------------|----------------------------------------------------|-------------------------------|
| CI -          | White precipitate  | Dissolves in dilute NH3 solution                   | Most soluble                  |
| Br -          | Cream precipitate  | Dissolves in concentrated NH <sub>3</sub> solution |                               |
| 1-            | Yellow precipitate | Insoluble                                          | Least soluble                 |



# **Equations:**

# 1) Potassium Chloride + Silver nitrate

Full:

Ionic:

$$CI_{-(aq)}$$
 +  $Ag_{+(aq)}$   $\rightarrow$   $AgCI_{(s)}$ 

# 2) Potassium Bromide + Silver nitrate

Full:

Ionic:

$$Br_{-(aq)}$$
 +  $Ag_{+(aq)}$   $\rightarrow$   $AgBr_{(s)}$ 

# 3) Potassium Iodide + Silver nitrate

Full:

Ionic:

$$I_{-(aq)}$$
 +  $Ag_{+(aq)}$   $\rightarrow$   $Ag_{-(aq)}$ 

**Generally:** 

$$X - (aq)$$
 +  $Ag + (aq)$   $\rightarrow$   $Ag X (s)$ 

#### Disproportionation reactions - Uses of chlorine and Chlorate (I)

### **Disproportionation**

**Disproportionation:** 

Is a REDOX reaction where the same element has been both Oxidised and Reduced

# 1) Chlorine and cold NaOH - Bleach:

$$Cl_{2(aq)}$$
 +  $2NaOH_{(aq)}$   $\rightarrow$   $NaCl_{(aq)}$  +  $NaClO_{(aq)}$  +  $H_2O_{(l)}$  0 -1 +1

- The CI has been oxidised and reduced in this reaction.
- Sodium chlorate (I) is used in bleach.
- Uses bleaching paper / textiles / cleaning toilets

#### 2) Chlorine and drinking water:

$$Cl_{2(aq)} + H_2O(1) \rightarrow HCl_{(aq)} + HClO_{(aq)}$$
  
 $0 -1 +1$ 

#### Or dissociated:

$$Cl_{2(aq)} + H_2O(1) \rightarrow 2H_{+(aq)} + Cl_{-(aq)} + Cl_{-(aq)}$$

- In this reaction, the CI has been oxidised and reduced too.
- The chlorate (I) ion kills bacteria.
- Chlorine reacts with organic compounds from plant decomposition to form chlorinated compounds carcinogenic.
- Chlorine is toxic.
- Risk and Benefit must be assessed when making decisions on this scale.

#### Further reactions - In sunlight HCIO decomposes further:

$$HCIO(aq) \rightarrow HCI(aq) + \frac{1}{2}O_{2(aq)}$$

# Or dissociated:

$$HCIO(aq)$$
  $\rightarrow$   $H_{+}(aq)$  +  $CI_{-}(aq)$  +  $\frac{1}{2}O_{2}(aq)$ 

Combining these 2 reactions gives:

$$Cl_{2(aq)} + H_2O(1) \rightarrow 2HCl_{(aq)} + \frac{1}{2}O_{2(aq)}$$

 This means that the reaction between chlorine and water in sunlight produces hydrochloric acid and oxygen:

# Required Practical 4 - Test for ions

#### **Positive ions:**

# 1) Test for Group 2 metal ions, M2+ - Flame tests



# 2) Test for ammonium ions, NH<sub>4+</sub>:



#### **Negative ions:**

#### 3) Test for sulphate ions, SO<sub>42</sub>-



# 4) Test for hydroxide ions, OH-



- Dip red litmus paper onto the solution.
- If it turns blue, hydroxide, OH- are present.

# 5) Testing for Halide ions, X-



- Add nitric acid to remove any other ions that may interfere with the test.
- Add silver nitrate, AgNO<sub>3</sub>.
- The silver ions, Ag+ combines with the Halide ions, X- to form a silver halide precipitate
- Ammonia can be added as the different silver halides as they have different solubility's in ammonia.

#### **Results:**

| Halide<br>ion | Observations       | With Ammonia                                       | Solubility of the precipitate |
|---------------|--------------------|----------------------------------------------------|-------------------------------|
| CI -          | White precipitate  | Dissolves in dilute NH3 solution                   | Most soluble                  |
| Br -          | Cream precipitate  | Dissolves in concentrated NH <sub>3</sub> solution |                               |
| 1 -           | Yellow precipitate | Insoluble                                          | Least soluble                 |

### 6) Testing for carbonate ions, CO<sub>32-</sub>

