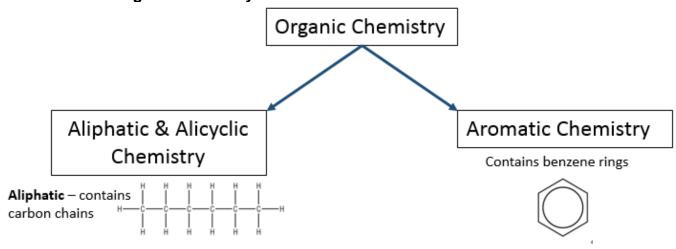
3.1 Introduction to Organic Chemistry

- **Organic Chemistry** is the study of carbon chemistry as carbon has the ability to join together in chains, rings, balls etc.
- Carbon also joins with other elements easily such as oxygen, hydrogen, nitrogen, phosphorous and the halogens.
- Carbon can join in many different ways and shapes.

Bonding in organic compounds:


- As carbon is in Gp4 of the periodic table it has 4 single outer shell electrons meaning it forms **4 covalent bonds only**.
- Carbon can form more than one bond with itself:

4 bonds only

A double bond and 2 single bonds to hydrogen = 4

The Structure of Organic chemistry

Alicyclic - contains rings

Definitions:

Hydrocarbon:

A compound that contains only hydrogen and carbon

Saturated:

A compound that contains single carbon – carbon bonds only

Unsaturated:

A compound that contains one or more carbon – carbon double bonds

$$C = C$$

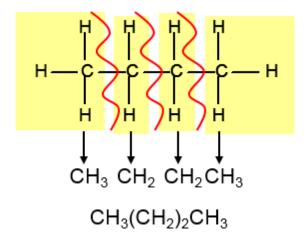
Molecular formula:

The actual number of atoms of each element in a compound

eg Hexane's molecular formula is C6H14

Empirical formula:

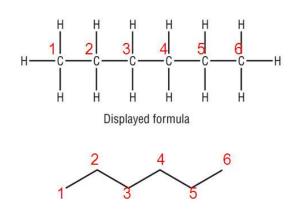
Simplest whole number ratio of atoms of each element in a compound


eg Hexane's empirical formula is C₃H₇

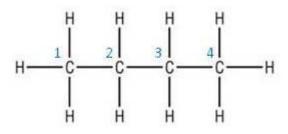
Displayed formula:

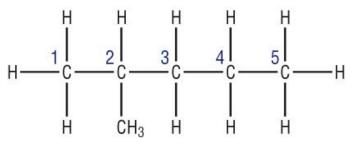
Shows all the atoms and bonds in a molecule

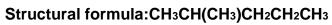
Structural formula:

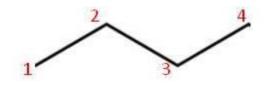

Shows how the atoms in a molecule are arranged

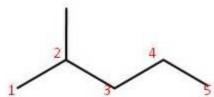
Skeletal formula:


Shows the shape of the carbon skeleton


• A good way to approach this is to count and number the carbons. This can then be transposed to the carbon skeleton:


Skeletal formula


Further examples:



Structural formula: CH₃CH₂CH₂CH₃

Homologous series:

Is a family of compounds containing the same functional group and having the same general formula. Each successive member has a different carbon chain length by CH₂

CH₃OH

CH₃CH₂OH

CH₃CH₂CH₂OH

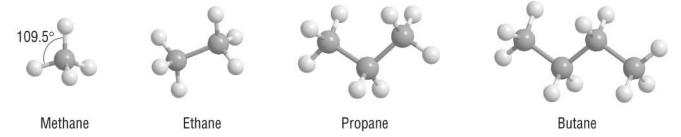
CH₃CH₂CH₂CH₂OH

Functional group:

Is an atom or group of atoms which gives an organic compounds its particular chemical properties

Functional groups

• Organic Chemistry is studied in a systematic way because each different group of atoms attached to a carbon atom has its own characteristic set of reactions.


		Functional group	Formula	Prefix (side chains)	Suffix (functional group)
		Alkane	C - C		-ane
		Halogenoalkane	– F	Floro -	
			– Cl	Chloro -	
			– Br	Bromo -	
	Increasing priority when naming		-1	lodo -	
		Alkene	C = C		-ene
		Amine	– NH2		-amine
		Alcohols	– OH	Hydroxy - (if other functional groups are present)	- ol
		Aldehydes	-с Н -сно		- al
		Ketones	R_C==0		- one
		Nitrile	R—C≡N		– nitrile
1		Acyl chlorides	O C CI		– oyl chloride
		Ester	C R'		- oate
		Carboxyllic acids	-c 0-H		- oic acid

Nomenclature

• Naming organic compounds according to the IUPAC system

The Alkanes:

- This is a homologous series of saturated hydrocarbons:
- All the molecules end in 'ane'

- The alkanes and their names are outlined in the table below:
- The number of carbons represent a name (later):

No of C's	Name	Formula
1	Methane	CH ₄
2	Ethane	C ₂ H ₆
3	Propane	C₃H8
4	Butane	C4H10
5	Pentane	C5H12
6	Hexane	C6H14
7	Heptane	C7H16
8	Octane	C8H18
9	Nonane	C9H20
10	Decane	C10H22

• Organic molecules are usually made up from:

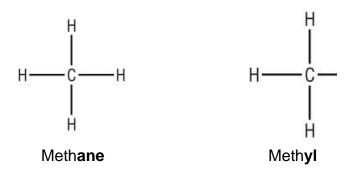
Carbon chain Side chains (alkyl groups) Functional groups

They are named in the following way

Stem

The longest carbon chain - the main name (in the middle)

Prefix


Added **before** the main name - pre - main name (side chains and some functional groups)

Suffix

Added **after** the main name - post - main name (functional groups)

Alkyl groups:

- If you remove a hydrogen from an alkane you have a group that has a bond that can join to the main carbon chain.
- Based on the alkanes the ending of these are changed to alkyl

The first six alkyl side chains are in the table below:

No of C's	Name	Formula
1	Methyl	– CH3
2	Ethyl	– C ₂ H ₅
3	Propyl	– С з H 7
4	Butyl	— С 4 H 9
5	Pentyl	– C5H11
6	Hexyl	– C ₆ H ₁₃

Naming rules:

- 1) Look for the longest continuous carbon chain Stem
- 2a) Look for the functional groups *Suffix* (can be a prefix)
- 2b) Count the position of the functional group and assign the lowest number. Use the lowest number *number goes between Stem and Suffix*
- 3a) Look for alkyl side chains *Prefix*
- 3b) Count the position of the alkyl side chain and assign the number in line with the count in (2) *number goes before the Prefix*

Example 1:-

1) Look for the longest continuous carbon chain – **Stem**

4 carbons, therefore: ... But...

- 2a) Look for the functional groups **Suffix** (can be a prefix)
- 2b) Count the position of the functional group and assign the lowest number. Use the lowest number *number goes between Stem and Suffix*

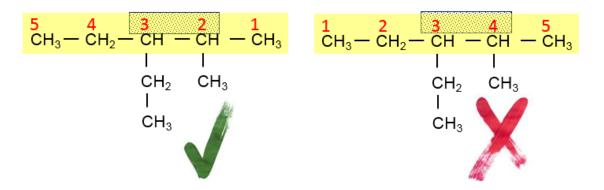
No other functional groups except alkane, therefore: ...ane

...But<mark>ane</mark>

- 3a) Look for alkyl side chains *Prefix*
- 3b) Count the position of the alkyl side chain and assign the number in line with the count in (2) *number goes between Prefix and Stem*

There's a methyl side chain on carbon '2', therefore: 2 – methyl...

2 - methylButane


*However, as methyl can only ever be on C2, we drop the '2'

MethylButane

Example 2 - Additional side chains

$$\begin{array}{cccc} \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH} & - \mathrm{CH} & - \mathrm{CH_3} \\ & \mathrm{I} & \mathrm{I} \\ & \mathrm{CH_2} & \mathrm{CH_3} \\ & \mathrm{I} \\ & \mathrm{CH_3} \end{array}$$

1) Look for the longest continuous carbon chain - **Stem**

5 carbons, therefore:

... Pent... (keeping the numbers low)

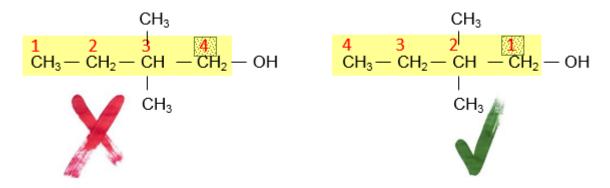
- 2a) Look for the functional groups **Suffix** (can be a prefix)
- 2b) Count the position of the functional group and assign the lowest number. Use the lowest number *number goes between Stem and Suffix*

No other functional groups except alkane, therefore: ...ane

...Pentane

- 3a) Look for alkyl side chains *Prefix*
- 3b) Count the position of the alkyl side chain and assign the number in line with the count in (2) *number goes between Prefix and Stem*

There's a 2 - methyl and a 3 - ethyl side chain, these are put in alphabetical order, therefore:


3 - ethyl, 2 - methyl...

3 – ethyl, 2 – methylPentane

Example 3 - Side chains and a functional group

$$CH_3$$
 $|$ CH_3-CH_2-CH $-CH_2-OH$ $|$ CH_3

1) Look for the longest continuous carbon chain – **Stem**

4 carbons, therefore:

... But... (keeping the numbers low)

2a) Look for the functional groups – *Suffix* (can be a prefix)

Alcohol functional group present ... ol

• For functional groups that start with a vowel, insert 'an' on the end of the stem

2b) Count the position of the functional group and assign the lowest number. Use the lowest number – *number goes between Stem and Suffix*

Alcohol functional group on carbon 1, therefore ...
$$\frac{1}{1}$$
 – ol

...Butan – $\frac{1}{1}$ – ol

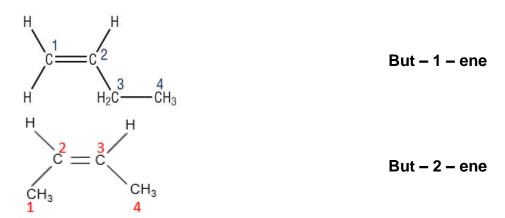
- 3a) Look for alkyl side chains *Prefix*
- 3b) Count the position of the alkyl side chain and assign the number in line with the count in (2) *number goes between Prefix and Stem*

There's are two 2 - methyl side groups

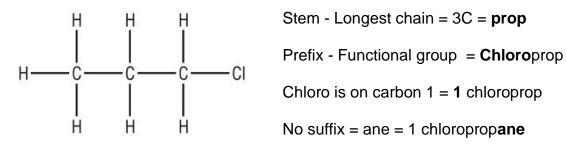
• For identical side groups of the same carbon we use di - 2, tri - 3, tetra - 4

- Numbers are separated from names by hyphens.
- Numbers are separated from other numbers by commas

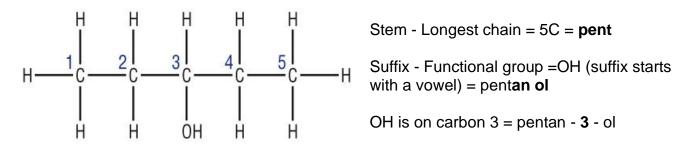
Example 4: Cyclic alkanes

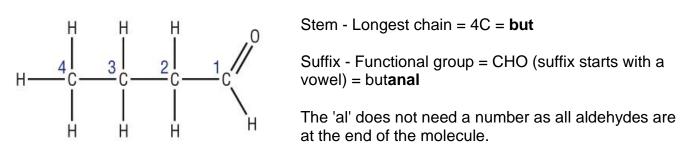


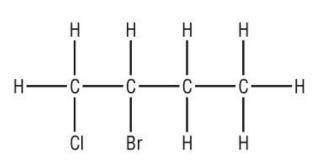
 If an alkane is cyclic we use the prefix 'Cyclo'


cyclohexane

Other examples:


• These contain a C=C, the ending of the name changes to 'ene' and we have to put a number to where the double bond is in the carbon chain:-


Names for Halogenoalkanes

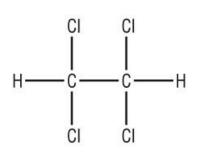

Names for alcohols

Names for aldehydes

More than one of the same type of functional group

Stem - Longest chain = 4C = but

Prefix - Functional group = CI on carbon 1

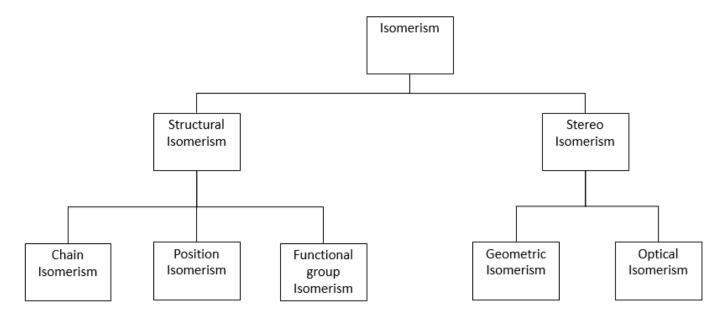

= 1 - chloro

-H Functional group = Br on carbon 2 (prefix)n = 2 bromo

Functional groups are named alphabetically: 2 - bromo - 1 - chlorobut

No suffix = ane = 2 - bromo - 1 - chlorobutane

Names for many of the same functional groups:


Longest chain = 2C = eth

Functional group = CI, (2 x on carbon 1) and 2 x on carbon 2 (prefix), numbers first then how many chlorines: **1,1,2,2** - **tetrachloro**eth

No suffix = ane = 1,1,2,2 - tetrachloroeth**ane**

Isomerism

- The molecular formula only tells you how many atoms of each element are present.
- It does not give you the structure.
- Molecules often have the same molecular formula but very different structures. These are called **Isomers** and there are many types.

Structural Isomers

These have different structures using the same atoms.

Structural Isomer:

Are compounds with the same molecular formula but a different structural formula

There are 3 types of structural isomers

Stereo Isomers

 These have the same structures using the same atoms but the atoms are arranged differently in space.

Stereo Isomer:

A Molecule with the same structural formula but its atoms are arranged differently in space

- There are **2 types** of stereoisomers
 - 1) Geometric or E/Z Isomerism (in Alkenes)
 - 2) Optical (in A2 Year)

Activity 1:

- Use the molymods to make and draw as many molecules as possible using all of 5 carbons and 12 hydrogens, C₅H₁₂.
- There are 3 different structures, draw these below:

Displayed formula		
Structural formula		
Skeletal formula		

- All of the molecules above contain the same number of atoms but they are arranged differently.
- They are different due to having different side groups or **chains**.
- This type of structural isomer is called **Chain Isomerism**:

1) Chain Isomerism:

These have the same molecular formula and functional group but a different arrangement of the carbon skeleton

Example:

Activity 2:

- Using the molymods make and draw as many molecules as possible using 3 carbons, 8 hydrogens, and 1 oxygen, C₃H₈O.
- Some of these structures that you have made will have different functional groups.
- There are 3 different structures, draw these below:

Displayed formula		
Structural formula		
Skeletal formula		

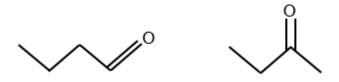
- All of the molecules above contain the same number of atoms but they are arranged differently.
- 2 of these are alcohols and these show Position Isomerism
 - 2) Position Isomerism:

These have the same molecular formula and functional group but the functional group is attached to a different carbon

Example:

- The other molecule has a **different functional group** from the alcohols, (ether)
- These are called Functional group Isomerism
 - 3) Functional group Isomerism: These have the same molecular but the atoms are arranged into a different functional group

Example:


Activity 3:

- Using the molymods make and draw as many molecules as possible using 3 carbons, 6 hydrogens, and 1 oxygen, C₃H₆O.
- These structures will have different functional groups.
- There are 2 different structures, draw these below:

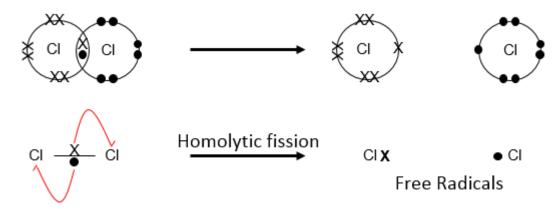
Displayed formula	
Structural formula	
Skeletal formula	

- The molecules above contain the same number of atoms but they are arranged differently.
- These molecules have a different functional group from each other.
- These are Functional group Isomerism

Example:

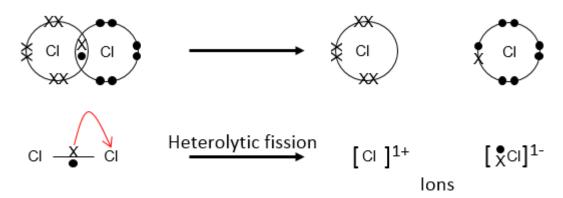
3) Functional group Isomerism: These have the same molecular but the atoms are arranged into a different functional group

Organic reagents and their reactions:


Organic reactions

- For a reaction to occur:
- A) A bond must break.
- B) The breaking of a bond will form a reagent.
- C) The reaction must take place

A) Bond breaking:


- For an organic reaction to occur, a covalent bond must be broken.
- Bond breaking is called **fission** and it can be broken in one of 2 ways:

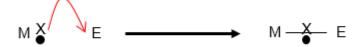
1) Homolytic fission

- This is when the electrons in the bond go 'HOME' to their parent atom.
- Each atom is the same. Homo....
- A half headed arrow represents the movement of 1 electron. This is because most reactions involve the movement of 2 electrons for which we use a normal headed arrow.
- Free radicals are atoms or groups of atoms with an unpaired electron, they are extremely reactive and are said to be 'short lived'.

2) Heterolytic fission

- This is when the electrons in the bond go to one of the atoms.
- A double headed arrow represents the movement of 2 electrons, a pair of electrons.
- The 2 resulting ions have a different number of electrons.
- It gives a positive ion and a negative ion.
- These are different from each other = hetero...

B) Types of reactants:


- Reactants start a reaction going.
- There are 3 types of reactants:

1) Free radical:

These are particles with an unpaired electron, Cl.

2) Electrophile:

These are electron pair acceptors

M: Molecule

E: Electrophile - accepting a pair of electrons forming a bond

- These are often negative ions but must have a lone pair of electrons as these are donated to form a new covalent bond.
- Br-, OH-, H₂O, NH₃

3) Nucleophile:

These are electron pair donors

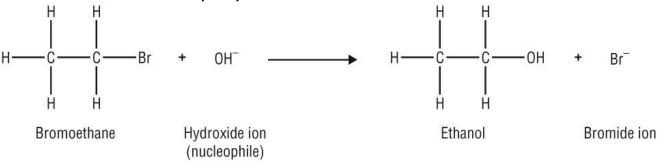
M: Molecule

N: Nucleophile - donating a pair of electrons forming a bond

- These are often positive ions.
- Br2, HBr, NO2+

C) Types of reaction:

1) Addition reactions

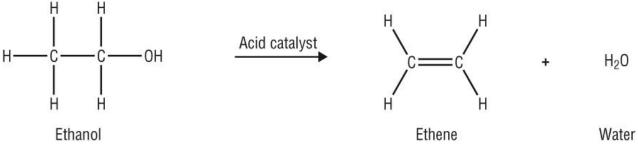

Involves 2 molecules joining to become 1 molecule

• Bromine has been added to ethene.

2) Substitution reactions

• Involves an atom (or group of atoms) being replaced by another atom (or group of atoms):

• 2 molecules make 2 (new) molecules



You can see that the Br is being substituted by OH.

3) Elimination reactions

• Involves the removal of one molecule from another.

• 1 molecule gives 2 molecules:

Water has been eliminated from ethanol