3.10 Arenes

Introduction to arenes:

• These are structures that contain benzene.

The structure of benzene:

The discovery of the structure of benzene has not been straight forward:

1825:

• Michael Faraday isolated benzene and found its composition to be:

92.3% carbon

7.7% hydrogen

Mr = 78

Empirical formula =

Molecular formula =

1858:

- This molecular formula was a conundrum to try and determine its structure.
- The lack of hydrogens in its structure suggested that there must be double (or even triple) bonds within the structure.
- The first structure suggested was:

$$H$$
 $C = C = C$ H

If this was the case it would readily react with:

Reagent:

Expected observation:

Actual observation:

1865

 Friedrich Kekulé suggested a ring type structure after having a dream of snakes eating their tales:

- It is known as **Kekulé's** structure.
- It is a plausible explanation of its structure.
 - It did not however explain why it did not react with bromine.

1928

- Kathleen Lonsdale used X Ray diffraction to confirm the ring type structure.
- It did however throw up new problems:
 - > The structure was shown to be planar
 - ➤ It was found that all the C-C bond lengths were equal in length and in between C C and C = C bond lengths
 - C C 0.153nm cyclohexane
 - C = C 0.134nm cyclohexene
 - C C 0.139nm benzene
- Kekulé's structure would look like this:

It actually looks like this:

This suggests that the C - C bond is somewhere between a single and double bond Hydrogenation of benzene

Kekulé defends his model:

- Kekulé suggested that this was due to an equilibrium which involved the double bonds switching positions.
- He explained that the C=C changed position before any reactions could occur:

Thermochemical evidence:

Benzene is in fact quite unreactive compared to alkenes.

Hydrogenation of cyclohexene - one double bond

Hydrogenation of Kekulé's benzene: cyclohexa-1,3,5-triene – three double bonds

Compare the results with the known value for Benzene:

• This tells us that benzene is more stable than the Kekulé model as less energy is given out:

Summary: The problems with Kekulé's model:

- 1) Benzene is a planar molecule, bond angle of 120°
- 2) Benzene's C C bonds are equal in length (between C C and C = C bond lengths)
- 3) It is more stable / less exothermic / unreactive than corresponding alkenes

A new model: The delocalised structure of benzene

- Benzene has the following properties which need explaining:
 - 1) 6 carbon's and 6 hydrogen's.
 - 2) Arranged in a planar hexagonal ring.
 - 3) Around each carbon Trigonal planar with a bond angle of 120°.
 - 4) C C bonds have the same bond length.
 - 5) Each carbon has 3 bonds
- This can only be explained if we look at the bonding in benzene around the carbon atoms:

- The clue comes from the alkenes:
- The second covalent bond is due to 2 adjacent p orbitals overlapping to form a π bond.
- The alkenes have 4 electrons between the carbon carbon double bond making it electron rich enough to attract an electrophile.
- These electrons are localised only between the 2 C's in the C=C.
- Imagine 6 of these p orbitals on every carbon in benzene:

6 x p orbitals

π delocalised orbital

- Each C has 3 bonds
- Each C has a spare e in a p orbital
- 6 of these p orbitals can overlap forming a π orbital where 6e's spread over all 6 carbons.
- The 6 electrons can be anywhere in the π orbital formed.
- These is delocalisation.

The unreactivity of benzene:

- This means that each C C has 2e in the σ bond and 1e from the delocalised π system.
- This makes benzene less electron rich than alkenes.
- This means they are not as good at attracting electrophiles.
- The bonding but must be considered as a delocalised electron charge cloud spread out over the whole ring.
- This gives rise to certain difficulties when drawing the structure of benzene:
 - Represents 2e's in a bond
 - = Represents 4e's in a double bond
- As neither of these is appropriate to show the distribution of electrons in benzene, the following structure is often used:

The delocalised model of benzene and chemical reactivity:

- Benzene is more stable than expected, less so than alkenes.
- This is because the electron density between the carbon atoms is less than in alkenes.
- This makes them attract electrophiles less well than alkenes:

Reaction with	Alkenes	Benzene	
Decolorise bromine water	✓	×	
Strong acids, HCl	✓	×	
Halogens, Cl ₂	✓	*	

Questions:

1)	Draw the Kekulé structure of benzene and give its IUPAC name
2)	Outline 3 problems with Kekulé's structure:
3)	Draw a labelled diagram showing the more modern structure of benzene
4)	Use your diagram drawn in (3) to explain the following: i) Bond lengths in benzene
	ii) Relative unreactive nature of benzene with bromine
	iii) It is a planar molecule, give the bond angle
5)	Write chemical reactions and draw an enthalpy profile showing how benzene is more stable than the Kekulé structure

Delocalisation of electrons:

A delocalised electron is an electron in an atom, ion or molecule that is not associated with any single atom or single covalent bond.

1) Consider ethene – H₂C=CH₂: One double bond.

- Although 2 p orbitals overlap creating a π orbital, the electrons are still localised in a covalent (double) bond ie between 2 carbon atoms
- Not delocalised
- 2) Consider Pent 1,4 diene H₂C=CH CH₂ CH=CH₂ : 2 double bonds with 2 single bonds between:

- Although there are 4 p orbitals, they cannot all overlap as they are not all next to each other. The carbon in blue has no p orbital so they cannot overlap with each other.
- They only overlap between 2 carbon atoms creating 2 separated π orbitals.
- The electrons are still localised in a covalent (double) bond ie between 2 carbon atoms.
- Not delocalised
- 3) Consider But 1,3 diene H₂C=CH CH=CH₂
 Alternating double / single bonds ie double bond separated by one single bond:

- There are 4 p orbitals, they can now all overlap as they are all next to each other.
- They all overlap across 4 carbon atoms / 3 bonds creating one delocalised π orbitals.
- Delocalised therefore more stable than a standard alkene

Summary: For delocalisation of electrons:

- p orbitals must be adjacent to each other for them to overlap
- Look for double bonds separated by single bonds ie they must alternate
- This makes them more stable / less reactive / less exothermic
- As they are less electron rich

Questions

- 1) Draw the following molecules. Which of them would have delocalised electrons:
- a) Propene

b) Pent - 1,4 - diene

c) Hex - 1,3 - diene

d) Pent - 1,3 - diene

e) Hex - 1,3 - diene

f) Hex - 2.4 - diene

g) Cyclohex – 1,3 – diene

h) Cyclohex – 1,4 – diene

h) Prop - 2 - enal

h) But – 3 - enal

2)		hlorination of cyclohexene has an enthalpy change, $\Delta H = -80.0$ kJ mol ⁻¹ Write a balanced chemical reaction for the chlorination of cyclohexene:
	b.	Write a balanced chemical reaction for the chlorination of cyclohex – 1,4 – diene and predict its enthalpy change?
	C.	Write a balanced chemical reaction for the chlorination of cyclohex $-$ 1,3 $-$ diene and predict its enthalpy change?
	d.	Your answers to (c) and (d) should be different, explain why they have different enthalpy changes?
,	Ethan their C	oic acid is acidic because the OH bond can dissociate. Alcohols are not acidic as OH bond cannot dissociate. Write a chemical equation for the dissociation of ethanoic acid
	b.	Look at the ethanoate ion in the reaction above. Draw the ethanoate ion displayed and include the p orbitals in the carbonyl (carbon and oxygen) and one of the p orbitals containing the lone pair electrons on the O

c. Your diagram in (b) to explain why carboxylic acids dissociate whereas alcohols do not?

Naming basic aromatic compounds:

- For a group to be attached to a benzene ring, a hydrogen must be replaced.
- Common groups are Cl chloro, Br Bromo, NO₂ Nitro, and alkyl groups, CH₃ Methyl:

- If there is more than 1 group attached, then we number to give the lowest value around the ring.
- We start numbering at the alkyl group / major functional group:

• We use the name 'benzene' when it is the highest priority group.

Naming aromatic compounds where another functional group takes priority:

- Just as hydroxy is used for the alcohols, OH when a higher priority group is present.
- Benzene becomes phenyl
- Common higher priority groups are NH₂ Amine, OH Alcohols, C=O aldehydes and ketones, and C=C alkenes:

Reactions of benzene:

- If it was an addition reaction like the alkenes, then the delocalised ring structure would be disrupted as the electrons would be needed to form bonds with the electrophile.
- This would make the product less stable than benzene meaning the reaction would be energetically unfavorable.
- For this reasons, benzene undergoes **substitution** instead of **addition** in order to maintain the delocalised electron system and its stability.
- They all react with **electrophiles**, and these are always **positive** as benzene is not as electron rich as alkenes.

1) Nitration:

Reagents and conditions:

Concentrated nitric acid and concentrated sulphuric acid (catalyst) / Reflux at 55°C

Overall Equation:

Reaction Type:

Electrophilic substitution

Reaction:

a) Generation of the electrophile:

Nitration of benzene requires the production of a the more reactive nitronium ion:

$$HNO_3$$
 + H_2SO_4 \rightarrow NO_2^+ + HSO_4^- + H_2O

Nitronium ion is the electrophile

Note: The **Nitric acid** has become NO₂⁺, in effect losing an OH⁻ ion, making it a **base!!**

b) Electrophilic Substitution Steps

c) Regeneration of the catalyst

$$H^{+}$$
 + HSO_{4}^{-} \rightarrow $H_{2}SO_{4}$

• The H⁺ generated will react with HSO₄⁻ forming sulphuric acid, H₂SO₄. This means sulphuric acid is a catalyst.

11

2) Friedel - Crafts - Acylation:

Reagents and conditions:

Acyl chloride and AlCl₃ (Halogen carrier / catalyst) / Heat under reflux

Overall Equation:

$$R - C$$

$$+ R - C$$

$$CI$$

$$+ HCI$$

Reaction Type:

Electrophilic substitution

Reaction:

a) Generation of the electrophile:

Acyl chlorides are not polar enough to react with benzene, a (+) charge is required:

$$R \xrightarrow{\delta^{+}C} \xrightarrow{O} \qquad \qquad R \xrightarrow{C} + \qquad \qquad + \qquad \qquad AlCl_{4}$$

Carbocation is the electrophile

b) Electrophilic Substitution Steps

c) Regeneration of the catalyst

$$H^{+}$$
 + $AICI_{4}^{-}$ \rightarrow $AICI_{3}$ + HCI

- The H⁺ generated will react with AlCl₄⁻ forming AlCl₃. This means AlCl₃ is a catalyst.
- AlCl₃ is often referred to as a halogen carrier

Extension –reactions and mechanisms 3 and 4 are not in the specification.

3) Friedel – Crafts - Alkylation:

Reagents and conditions:

Halogenoalkane, RCI and AlCI₃ (Halogen carrier / catalyst) / Heat under reflux

Overall Equation:

Reaction Type:

Electrophilic substitution

Reaction:

a) Generation of the electrophile:

Halogenoalkanes are not polar enough to react with benzene, a (+) charge is required:

$$\delta_{R}^{+}$$
 Cl : $AlCl_{3}$ R^{+} + $AlCl_{4}^{-}$ Carbocation is the electrophile

b) Electrophilic Substitution Steps

c) Regeneration of the catalyst

$$H^+$$
 + $AICI_4^ \rightarrow$ $AICI_3$ + HCI

- The H⁺ generated will react with AlCl₄⁻ forming AlCl₃. This means AlCl₃ is a catalyst.
- AlCl₃ is often referred to as a halogen carrier

4) Halogenation:

Reagents and conditions:

Halogen, Cl₂ and AlCl₃ (Halogen carrier / catalyst) / Heat under reflux

Overall Equation:

Reaction Type:

Electrophilic substitution

Reaction:

a) Generation of the electrophile:

Halogens are non polar so do not react with benzene, a (+) charge is required:

b) Electrophilic Substitution Steps

c) Regeneration of the catalyst

$$H^+$$
 + $AICI_4^ \rightarrow$ $AICI_3$ + HCI

- The H⁺ generated will react with AlCl₄⁻ forming AlCl₃. This means AlCl₃ is a catalyst.
- AlCl₃ is often referred to as a halogen carrier

5) Reduction of nitrobenzene → Phenylamine: In the specification

Reagents and conditions:

- i) Sn and concentrated HCl / Heat under reflux: Gives the salt of the amine
- ii) Add NaOH: Gives the amine

Overall Equation:

$$NO_2$$
 + $6[H]$ $Sn, conc HCI$ $Reflux$ + $2H_2O$ Nitrobenzene Phenylamine

Reaction Type:

Reduction

Summary:

• They all undergo the following mechanism:

- They all require a catalyst to generate a (+) charge:
- They only ever mono substitute (unless extremely harsh conditions)

Uses:

Nitration of methylbenzene

$$O_2N$$
 NO_2
 NO_2

- Methyl benzene used to be called toluene. Toluene is slightly more reactive than benzene.
- The nitration of toluene forms nitro toluene.
- This is multiply nitrated in the 2,4,6 position because toluene is more reactive:

Phenylamine

Used in the manufacture of dyes

Comparing the reactivity of alkenes and benzene

Cyclohexene vs Benzene

Cyclohexene	Benzene
Will decolourise bromine water:	 Only reacts with bromine with a halogen carrier:
Cyclohexene + Br ₂ - Br 1,2-dibromocyclohexane Addition reaction	+ Br ₂ FeBr ₃ or AlBr ₃ + HBr Bromobenzene Substitution reaction
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н—с
High electron density: localised electrons	Low electron density: delocalised electrons
 Reacts readily as it can attract electrophiles more readily 	 Requires a catalyst to produce a (+) ion in order to react with benzene
The mechanism:	The mechanism:
Br ^{&+} Br ^{&+} Intermediate carbocation Br 1,2-dibromocyclohexane	$AlBr_3 + Br_2 \rightarrow AlBr_4^- + Br^+$ $+ H^+$
	AlBr₄⁻ + H⁺ → AlBr₃ + HBr
Electrophilic addition	Electrophilic substitution

Questions:

1) Name the following molecules:

2) Draw the following molecules:

Phenol

- 1,3 dimethyl benzene
- 2,4,6 trinitro phenylamine

- 3) Write balanced chemical reactions for the following:
 - a. Benzene and nitric acid
 - b. Benzene and propanoyl chloride
 - c. Benzene and bromoethane
 - d. Benzene and iodine
 - e. The reduction of nitro benzene

- f. For each of the following write down the reactants and conditions
 - a) Benzene to nitrobenzene
 - b) Benzene to ethyl benzene
 - c) Benzene to chlorobenzene
 - d) Benzene to phenyl ethanone
 - e) Reduction of nitrobenzene
- 4) Draw the mechanism for (a) and (b) in question 3. For each include the following:
 - A reaction for the generation of the electrophile
 - A reaction for the regeneration of the catalyst