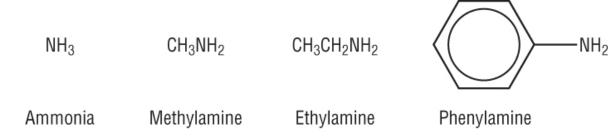

3.11 Amines


Introduction to amines:

- Have an NH₂, attached to an alkyl group.
- Amines are derivatives of ammonia where at least 1 H has been replaced with an R group:

Naming amines:

To the longest single alkyl chain add the suffix 'amine':

• If there are 2 or more alkyl groups on the nitrogen:

Naming amines

• Give the IUPAC name of the following and classify the amine:

Structure	IUPAC name
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	
CH₃CH₂CH₂NHCH₂CH₃	
CH ₃ CH ₂ CH ₂ CH ₂ N(CH ₃)CH ₂ CH ₃	
[CH ₃ CH ₂ CH ₂ CH ₂ N(CH ₃) ₃] ⁺	

• Draw the structure of the following and classify the amine:

Amine	Structural formula	Skeletal formula
Hexylamine		
N – ethyl pentylamine		
N,N – ethyl methyl pentlylamine		
N – methyl Phenylamine		

Solubility

Hydrogen bond
$$H - C - C^{\delta+} - N : \stackrel{\delta-}{-} - - H^{\delta+} - \ddot{O} : \stackrel{\delta-}{-} + H^{\delta+}$$

$$H - C - C^{\delta+} - N : \stackrel{\delta-}{-} - - H^{\delta+} - \ddot{O} : \stackrel{\delta-}{-} + H^{\delta+} + \ddot{O} : \stackrel{\delta-}{-} +$$

- The amines form hydrogen bonds with water (and themselves).
- The solubility decreases with the increase in the alkyl chain (as with alcohols / carboxylic acids)

Preparation of amines:

- These are done in one of 3 ways:
- 1) From halogenoalkanes (AS)
- 2) Reduction of nitrated benzene
- 3) Reduction of nitriles

1) Preparation of amines from halogenoalkanes (AS):

• This reaction converts a halogenoalkane to amines

 RCH_2CI + $2NH_3$ \longrightarrow RCH_2NH_2 + NH_4CI

Reagents: Excess ethanolic ammonia

Conditions: Reflux

The Mechanism – Nucleophilic substitution

Further reactions of the halogenoalkanes secondary / tertiary aliphatic amines:

• Ethylamine can react further (like the ammonia) with more chloroethane:

$$CH_{3}CH_{2}CI + 2CH_{3}CH_{2}NH_{2} \rightarrow (CH_{3}CH_{2})_{2}NH + CH_{3}CH_{2}NH_{3}CI$$

$$\vdots \overline{C}I \qquad \vdots \overline{C}I \qquad \vdots \overline{C}I$$

$$H \rightarrow C \rightarrow \overline{C} \rightarrow \overline{C$$

• And diethylamine can react even further again:

$$CH_3CH_2CI + (CH_3CH_2)_2NH \rightarrow (CH_3CH_2)_3N + HCI$$

- Multiple substitution is avoided by having ammonia in excess.
- This minimises the 'chance' of further substitution.

2) Reduction of nitrobenzene to aromatic amines:

Reagents: 1) Sn and concentrated HCl 2) NaOH

Conditions: Reflux

Nitrobenzene Phenylamine
$$NH_2 + 2 H_2 O$$

- NaOH is added to release phenylamine from its salt (with the HCl)
- This is an important reaction as it is used in the manufacture of dyes.

3) Reduction of nitriles to amines:

This reaction converts a nitrile to amines:

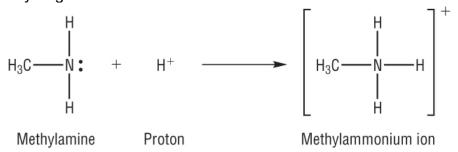
$$R-C \equiv N$$
 + $2H_2$ \longrightarrow $R-CH_2-NH_2$

Reagents: H₂ and Ni

Conditions: High T and P

Questions:

- 1) Complete and balance the following reactions:
 - a. $CH_3CH_2CH_2CI$ + NH_3 \rightarrow
 - b. $CI + NH_3 \rightarrow$
 - c. $CICH_2CH_2CH_2CI + NH_3 \rightarrow$
- 2) Complete and balance the following reactions forming amines:
 - a. $CH_3CH_2CH_2CN + H_2 \rightarrow$
 - b. \leftarrow CN + H₂ \rightarrow
 - c. $NCCH_2CH_2CH_2CH_2CN + H_2 \rightarrow$
- 3) Outline, how you would make phenylamine from benzene (2 steps). In your answer include:
 - > Balanced chemical equations
 - > Any reagents and conditions
 - > Types of reactions


Basicity in amines:

Definitions:

Base:

Proton acceptor – accepts protons, H⁺ ions when mixed with water

- Amines are weak bases.
- This is because they have a lone pair of electrons on the nitrogen available to donate when accepting a hydrogen ion:

The basicity of the 1° amines: The inductive effect

 The strength of the basicity depends upon the availability of the nitrogen's lone pair electrons:

pH 8	pH 10	pH12
Phenylamine	Ammonia	Butylamine
NH ₂ H ⁺	NH ₃ H ⁺	C₄H ₉ NH ₂ H⁺
 Negative inductive effect: Lone pair electrons on the nitrogen delocalise with the delocalised π electrons in benzene This decreases the electron density on the nitrogen. This makes it a weaker lone pair donor. Which makes it a weaker base. 	Base line: No inductive effect	 Positive inductive effect: Alkyl groups give a small push of electrons towards the nitrogen. This increases the electron density on the nitrogen. This makes it a better lone pair donor. Which makes it a stronger base.

Base reactions of amines:

• Just as ammonia forms salts with acids so do amines:

Ammonia:

Base + Acid → Ammonia salts

 NH_3 + HCI \rightarrow NH_4CI

Amines:

Base + Acid \rightarrow Alkylammonium salts RNH₂ + HCl \rightarrow RNH₃Cl

Examples:

CH₃NH₂ + HCl → CH₃NH₃Cl methylammonium chloride

CH₃NH₂ + HNO₃ → CH₃NH₃⁺NO₃⁻ methylammonium nitrate

> Either write in the charges of the salt or don't!

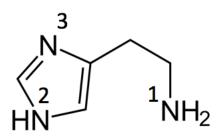
The amines can be recovered by adding NaOH (a stronger base):

 CH_3NH_3CI + NaOH \rightarrow CH_3NH_2 + NaCl + H_2O

Questions:

1) Place the following molecules in order with the most basic first:

NH₃ CH₃NH₂


 $C_6H_5NH_2$

(CH₃)₂NH

 $(C_6H_5)_2NH$

2) Explain your answer to (1):

3) The molecule below is histamine. It has 3 amine groups present in the molecule. Place the 3 amine groups in order starting with the most basic, explain your answer:

- 4) Write the balanced chemical reaction for the following:
 - a. Butylamine and hydrochloric acid
 - b. Ethylamine and nitric acid
 - c. Phenylamine and hydrobromic acid
 - d. Propylamine and sulphuric acid (hard)

Nucleophilic properties of the amines:

• Remember, the amines are derivatives of ammonia. If you understand the reactions of ammonia, the amines will be similar:

Nucleophile: Donates a pair of electrons forming a dative covalent bond

A) The reactions with the halogenoalkanes:

1) With ammonia, NH₃, to form 1° amines:

Recap: The nucleophilic substitution of the halogenoalkanes with ammonia:

• This reaction converts a halogenoalkane to amines

$$R^{1}X$$
 + $2NH_{3}$ \rightarrow $R^{1}NH_{2}$ + $NH_{4}^{+}X^{-}$
 $CH_{3}CH_{2}CI$ + $2NH_{3}$ \rightarrow $CH_{3}CH_{2}NH_{2}$ + $NH_{4}^{+}CI^{-}$

Reagents: Excess ethanolic ammonia

Conditions: Reflux

The Mechanism

Substitution: When one atom or group of atoms are swapped with another atom or group of atoms

2) With 1° amines, RNH₂, to form 2° amines, R₂NH:

$$R^{2}X$$
 + $2R^{1}NH_{2}$ \rightarrow $R^{2}R^{1}NH$ + $R^{1}NH_{3}^{+}X^{-}$
 $CH_{3}CH_{2}CI$ + $2CH_{3}CH_{2}NH_{2}$ \rightarrow $(CH_{3}CH_{2})_{2}NH$ + $CH_{3}CH_{2}NH_{3}^{+}CI^{-}$

Mechanism:

$$H - C - C - C - N - CH_{2}CH_{3} -$$

3) With 2° amines, R₂NH, to form 3° amines, R₃N:

$$R^{3}X$$
 + $2R^{2}R^{1}NH$ \rightarrow $R^{3}R^{2}R^{1}N$ + $R^{2}R^{1}NH_{2}^{+}X^{-}$
 $CH_{3}CH_{2}CI$ + $2(CH_{3}CH_{2})_{2}NH$ \rightarrow $(CH_{3}CH_{2})_{3}N$ + $(CH_{3}CH_{2})_{2}NH_{2}^{+}CI^{-}$

Mechanism:

$$\begin{array}{c} \text{:CI} \\ \text{H} - \text{C} - \text{C} \\ \text{C} \\ \text{H} \\ \text{H} - \text{C} \\ \text{C} \\$$

4) With 3° amines, R₃N, to form quartenary ammonium salt, R₄N⁺:

$$R^{4}X$$
 + $R^{3}R^{2}R^{1}N$ \rightarrow $R^{4}R^{3}R^{2}R^{1}N^{+}X^{-}$
 $CH_{3}CH_{2}CI$ + $(CH_{3}CH_{2})_{3}N$ \rightarrow $(CH_{3}CH_{2})_{4}N^{+}CI^{-}$

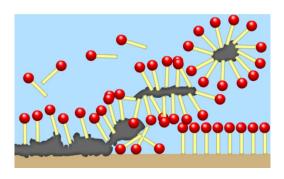
Mechanism:

Summary:

Unless an amine is used in excess, further substitution can occur until a quaternary salt is made.

Cationic surfactants

Surfactant: A compound that is partly soluble and partly insoluble in water


Quartenary ammonium salts are one of these types of compounds:

Positively charged cation region – soluble in water $\begin{matrix} CH_3 \\ N^+ - CH_3 \end{matrix}$ Long non polar hydrocarbon chain – insoluble

As detergents:

in water (soluble in non polar substances)

- The non-polar hydrocarbon chain will dissolve in a non-polar substance (such as grease).
- The positively charged region will dissolve in water.
- This allows spots of grease to mix with water and therefore be washed away:

As conditioners:

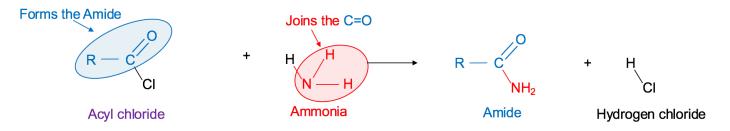
- · Wet hair and fabrics pick up negative charges.
- The wet hair / fabric attracts the positively charged region creating a coating.
- This prevents the build-up of further charges (static electricity) smooth hair / soft fabric.

Qu

,	palanced chemical equations for the following: Chloromethane and ammonia
b.	Chloroethane and ethylamine

- c. Chlorooethane and diethylamine
- d. Chloropropane and phenylamine
- e. Chlorododecane (12carbons) and trimethylamine
- f. Give a use of the product in (e). Explain how it works?

2) Write out the mechanisms for 1b:

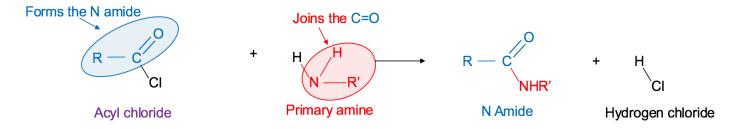

Nucleophilic addition – elimination reactions using amines as nucleophiles:

> Recap from 3.9 Carboxylic acids and derivatives:

A) With acyl chlorides:

1) With ammonia:

• The reaction with ammonia gives the amide:

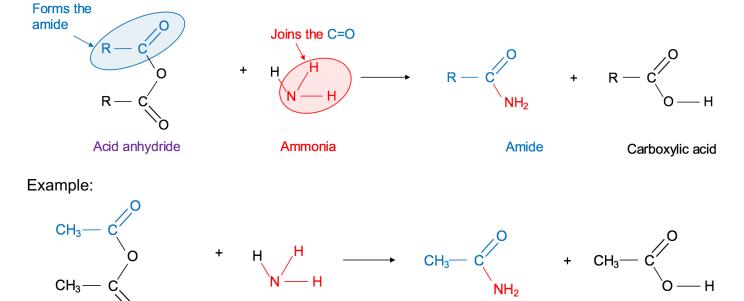


Example:

The mechanism:

2) With primary amines:

• The reaction with primary amines gives the N substituted amide:


Example:

The mechanism:

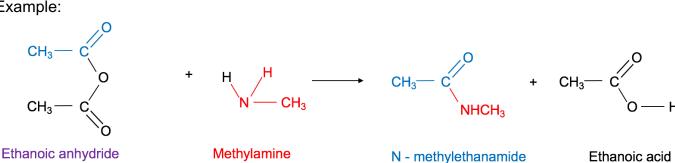
B) With acid anhydrides:

1) With ammonia:

The reaction with ammonia gives the amide:


Ethanamide

2) With primary amines:


Ethanoic anhydride

The reaction with primary amines gives the N substituted amide:

Ammonia

Example:

Ethanoic acid

Questions:

- 1) Write balanced chemical equations for the following:
 - a. Ethanoyl chloride and ammonia
 - b. Ethanoyl chloride and methylamine
 - c. Name the organic product formed for each of the reactions above
- 2) Write out the mechanisms for 1b:

- 3) Write balanced chemical equations for the following:
 - a. Ethanoic anhydride and ammonia
 - b. Ethanoic anhydride and methylamine
 - c. Name the organic products formed for each of the reactions above
- 4) Have a go at the mechanism for 1b: