3.4 The Alkenes

Introduction

- General formula: C_nH_{2n}
- Unsaturated hydrocarbons (contains at least one C=C bonds)
- No free rotation around the C=C
- Exhibit E/Z geometric isomerism
- A bond angles of 120° around each of the double bonded carbons

Saturated: Contains C – C single bonds only

Unsaturated: Contains at least one C = C double bonds

Hydrocarbon: Only contains the elements hydrogen and carbon

The nature of the double bond:

- Alkenes are more reactive than the alkanes due to the high electron dense C=C
- They typically take part in addition reactions (to the C=C).

- The double bond consists of a sigma bond (σ) and a pi bond (π).
- The π bond is weaker than the σ bond so breaks first in reactions involving alkenes.
- The π bond changes the shape around the carbon atom to a trigonal planar with a bond angle of 120° :
- The planar double bond locks the molecule around the double bond
- This means that there is no free rotation about these bonds.

Cyclic alkenes:

- Cyclic means that the carbon chain is joined at either end forming a ring.
- The reactions of cyclic alkenes is exactly the same as straight chain alkenes
- As there is no 'ends' to the molecule they have 2 H's less in the general formula.

Naming alkenes

Give the IUPAC name of the following alkenes:

alkene	IUPAC name
CH₃CH=CHCH₃	
CH ₂ =CHCH(CH ₃) ₂	
CH ₃ CH ₂ CH=CHCH=CH ₂	

Draw the structure of the following alkenes:

alkene	structure
2-methylpropene	
2,3-dimethylbut-1-ene	
2,3-dimethylcyclohexene	

Alkenes exhibit isomerism

Structural Isomer:

Are compounds with the same molecular formula but a different structural formula

Stereoisomer:

A Molecule with the same structural formula but its atoms are arranged differently in space

Alkanes have 3 types of structural isomers

Chain Isomerism:

These have the same molecular formula and functional group but a different arrangement of the carbon skeleton

Position Isomerism:

These have the same molecular formula and functional group but the functional group is attached to a different carbon

Functional group Isomerism:

These have the same molecular but the atoms are arranged into a different functional group

Complete the table below for hex - 2 - ene

Chain Isomer	Position Isomer	Functional group Isomer

Stereoisomerism and alkenes

Activity 1:

- Build but-2-ene. Look at your neighbours, are they the same?
- There are 2 different structures, draw these below:

Displayed formula	
Structural formula	
Skeletal formula	

This type of stereoisomer is called geometric or E/Z Isomerism:

Geometric Isomerism (E/Z isomerism)

These have the same molecular formula but different spatial arrangement due to the restricted rotation around the carbon – carbon double bond

Examples:

$$CH_3$$
 CH_3
 CH_3

This occurs because:

- 1) A carbon carbon double bond, C=C
- 2) Each carbon in the carbon carbon double bond must be attached to **2 different groups**:

Cahn - Ingold - Prelog nomenclature (CIP):

The rules:

- 1) Assign a priority to **each atom** attached to each carbon in the double bond using Ar's (assign a 1 or 2)
- 2) If the highest priority atoms are on the same side of the C=C assign **Z** isomer
- 3) If the highest priority atoms are on opposite sides of the C=C assign E isomer
- 4) If two atoms have the same atomic number, move to the next atom along the chain.

• Chlorine has the highest atomic number so it is given priority.

Examples: **Assign or draw and assign** the following as E/Z isomers **followed by the name** of the molecule

1)

$$C = C$$
 C_2H_5
 C_2H_5

4

2H5

2)

$$CI$$
 C C

Br

$$c = c$$

3)

$$CI$$
 $C = C$

CI

$$C = C$$

4)

$$C = C$$
 C_2H_5
 CH_3
 CI

H (

$$C = C$$
 C_2H_5
 CH_3

5) 2-bromo-1-iodoropropene

6) 1,3-dibromo-2-methylpropene

Reactions of alkenes:

The reactivity of the C=C double bond:

- Alkenes are more reactive than the alkanes due to the high electron dense C=C
- They typically take part in addition reactions (to the C=C).

	Bond	Bond enthalpy Kj mol ⁻¹
H_{IIIII} C C π -bond	σ bond	+347
Н	π bond	+265
σ -bond between carbons		

- The C=C requires 612 Kj Mol⁻¹ making it a lot stronger than just a C-C.
- The C=C is not however twice as strong
- The **sigma bond** (σ) is a lot stronger than the **pi bond** (π) which means that the **pi bond** (π) breaks leaving the **sigma bond** (σ) intact.

Reactions of the alkanes:

- Alkenes undergo addition reactions as they are unsaturated.
- The reactant will add across the C=C forming a **saturated** product:

The mechanism

- As A B comes towards the C = C, the electrons in the double bond **repels electrons** in the bond, **polarises** the molecule giving a δ and a δ + (the molecule may already be polar)
- The δ + end of the molecule is attracted to the electron rich C = C.
- The pair of electrons from the C = C form a single bond with the δ+ A atom. At the same time the electrons from the A B bond breaks heterolytically and the pair of electrons go to atom B, forming B⁻.
- A carbocation (positive) and negative ion is formed.
- The electrons from the negative ion, **B**⁻, donate a pair of electrons to form a bond with the **carbocation**.
- This is an **electrophilic addition** reaction.

1) Addition of halogens - Br₂: Forming a dihalogenoalkane

The mechanism:

Chemical test for C=C / unsaturation:

- Bromine water
- Orange to clear and colourless

2) Addition of hydrogen halides - HBr: Forming a halogenoalkane

The mechanism:

3) Heating with H₂O / H₂SO₄: Forming an alcohol (in 2 steps)

• However this happens in 2 stages with the sulphuric acid behaving as a catalyst:

Step 1:

Step 2:

• The sulphuric acid is used up in step 1 but regenerated in step 2

The mechanism:

4) Hydration of alkenes with H₂O / H₃PO₄ catalyst / 300°C / 60atm: Forming an alcohol

H C = C H +
$$H_2O$$
 $\xrightarrow{H_3PO_4}$ H C - C - H H OH

The mechanism:

- A pair of electrons from the C=C forms a bond with the H⁺ from the acid.
- A lone pair of electrons from water form a bond with the carbocation.
- An O H bond breaks moving the pair of electrons back to the oxygen.
- The alcohol is formed.
- The acid is a catalyst as it is used up in the first step / regenerated in the final step.

5) Hydrogenation – H₂: Forming alkanes – H₂ / Ni Catalyst / Heat

Addition to unsymmetrical alkenes: Markovnikov addition

- In this reaction the hydrogen and the halogen could add either way round across the C=C.
- This will give you a mixture of products of both halogenoalkanes.
- At first glance it would appear that both would be equally as likely.

2-bromopropane is the major product as it is formed from the **2° carbocation** which is more stable than the **1° carbocation**.

- As the number of alkyl groups increase there is a decrease in the positive charge.
- This increases the stability of the carbocation

Addition polymerisation:

Polymers

- Polymerisation is when an alkene undergoes an addition reaction to itself.
- The short starting alkenes are referred to as monomers
- A long molecule, **polymer** is formed with high Mr's.
- The type of reaction is addition polymerisation.
- Different polymers arise from different alkenes.
- A common equation for addition polymerisation is:

Poly(ethane) is the simplest:

Overall:

Some common polymers:

Identifying the monomer:

- The monomer is always identified by looking for the **repeat unit**.
- Once the repeat unit is found add a double bond between the carbons of the repeat unit.
- Then remove the 'branch' bonds linking it to the rest of the polymer:

Properties of Polymers

a) Effect of branching / packing

b) Effect of electronegative side groups

- As chlorine is more electronegative than carbon, a permanent dipole is formed.
- The δ chlorine is attracted to the δ + carbon in the next polymer molecule.
- The material is therefore hard but brittle.
- PVC window frames.

c) Effect of plasticisers

- Plasticisers are chemicals you add to polymers.
- They get between the polymer molecules pushing them further apart.
- This weakens the intermolecular forces of attraction.
- The material is more flexible as they can slide past each other more easily.
- Electrical cable insulation.