3.9 Carboxylic acids and esters

Introduction to carboxylic acids

• Carboxylic acids have the general formula:

$$R \xrightarrow{\delta^{+}} C \xrightarrow{\delta^{-}} H$$

Has carbonyl group C = O

and hydroxyl group C - OH

Naming:

- All carboxylic acids end in 'oic acid'
- The COOH group is the priority group so counting starts from this carbon:

3 methyl pentanoic acid

4 hydroxy butanoic acid

Naming carboxylic acids

Give the IUPAC name of the following:

Structure	IUPAC name
CH ₃ CH ₂ CH ₂ CH ₂ COOH	
(CH ₃) ₂ CHCH ₂ COOH	
CH ₃ CH ₂ CH(CH ₃)CH ₂ COOH	

• Draw the structure of the following:

Carboxylic acid	Structural formula	Skeletal formula
Methanoic acid		
Ethanoic acid		
2,3 dimethyl hexanoic acid		

Solubility

• Solubility – C₁ - C₄ carboxylic acids mix readily:

• C₅ → solubility reduces due to length of insoluble R chain.

Melting points

- · All carboxylic acids hydrogen bond
- With increased R chain, VDW also increases:

Acidic nature of carboxylic acids:

- Carboxylic acids are weak acids as they partially dissociate in water.
- They react as acids to form salts called carboxylates.

- Carboxylic acids are acidic enough to react with metals, alkalis and carbonates.
- Like inorganic acids they behave in the same way:

	Metal	+		Acid	\rightarrow		Salt		+	Нус	drogen
	Na	+		HCI	\rightarrow		NaCl		+	1⁄2⊢	I_2
	Na	+		HOOCI	₹ →		NaOOCR		+	1⁄2⊢	I_2
Usua	ally written:										
	RCOOH	+		Na	\rightarrow		RCOONa		+	1⁄2⊢	I_2
	Metal hydrox	ide	+	Acid		\rightarrow	Salt		+	Wa	ter
	NaOH		+	HCI		\rightarrow	NaCl		+	H_2)
	NaOH		+	HOO	CR	\rightarrow	NaOOCR		+	H_2)
Usua	ally written:										
	RCOOH		+	NaO	Н	\rightarrow	RCOONa		+	H_2)
	Metal Carbor	nate	+	Acid		\rightarrow	Salt	+	Water	+	Carbon dioxide
	Na ₂ CO ₃		+	2HCI		\rightarrow	2NaCl	+	H_2O	+	CO ₂
	Na ₂ CO ₃		+	2H000	CR	\rightarrow	2NaOOCR	+	H_2O	+	CO ₂
Usua	ally written:										
	2RCOOH		+	Na ₂ CO	3	\rightarrow	2RCOONa	+	H_2O	+	CO ₂

Top tip: Remember the test for a carboxylic acid is fizzing with NaHCO₃:

NaHCO ₃	+	HCI	\rightarrow	NaCl	+	H_2O	-	F	CO_2
NaHCO ₃	+	HOOCR	\rightarrow	NaOOCR	+	H_2O	-	F	CO_2
Usually written:									
RCOOH	+	NaHCO ₃	\rightarrow	RCOONa	+	H_2O	-	F	CO_2

Examples:

$$2CH_3CO_2H + Mg \rightarrow (CH_3CO_2)_2Mg + H_2$$
 Magnesium ethanoate
$$CH_3CO_2H + NaOH \rightarrow CH_3CO_2Na + H_2O$$
 Sodium ethanoate
$$2CH_3CO_2H + Na_2CO_3 \rightarrow 2CH_3CO_2Na + H_2O + CO_2$$
 Sodium ethanoate

Questions:

- 1) For the reactions beneath, finish off the word equations, then write balanced equations underneath:
 - a. Ethanoic acid + sodium →
 - b. Propanoic acid + magnesium →
 - c. Butanoic acid + lithium hydroxide →
 - d. Ethanoic acid + sodium carbonate →
 - e. Propanoic acid + lithium hydrogen carbonate →
- 2) The solubility of the carboxylic acids decreases as the alkyl group increases. Explain this trend:
- 3) Ethanoic acid has a boiling point of 118°C and cyclohexane of 81°C. Both have an Mr = 60. Explain the difference in boiling points and draw a diagram for the interactions between ethanoic acid molecules:

Esters

• Esters have the general formula:

$$R-C$$
 $O-R$

- They are derived from carboxylic acids.
- Esters are called a *derivative* of carboxylic acids due to the *substitution of the hydrogen* in the hydroxyl group with an *alkyl* group.

$$R - C O H$$

$$R - C O R'$$

Naming esters

Name the following esters:

$$CH_3CH_2CH_2$$
 C O CH_2CH_3

Esterification - making esters:

- The reaction is known as esterification.
- It is a reversible reaction:

Example:

- The name of the ester comes from the alcohol and the carboxylic acid
- Alcohol comes 1st becomes 'yl'
 Carboxylic acid 2nd becomes 'oate'

Name the alcohol and carboxylic acids used to make the following esters. Write balanced chemical equation showing the esterification reaction:

$$CH_3CH_2 - CO$$
 $O - CH_3$

$$CH_3 - C$$
 $O - CH_2CH_3$

$$CH_3CH_2CH_2$$
 C O CH_2CH_3

$$H - COO - CH_2CH_2CH_3$$

Uses of esters

- Flavourings due to their sweet smells / tastes
- Perfumes Due to their sweet smells
- Solvents polar molecules
- Plasticisers

Reactions of esters:

1) Hydrolysis of esters:

- It is the reverse reaction of esterification:
- This is the breaking of a bond (in esters) with water.

• It can be done using an acid or alkaline catalyst. The products formed are slightly different:

a) Acid hydrolysis:

Reagent: dilute aq sulphuric or hydrochloric acid

Conditions: Ruflux

• The hydrolysis of any carboxylic acid derivative results in the carboxylic acid.

Example:

b) Alkaline hydrolysis:

Reagent: dilute aq sodium hydroxide

Conditions: Ruflux

• When a base is used, the product is the carboxylate ion / salt of the carboxylic acid:

Example

or

*Note: The carboxylate salt can be converted to the carboxylic acid by adding an acid, eg HCl, H₂SO₄

Questions:

	produ	balanced chemical reactions for the acid hydrolysis of the following. Name the cts for each reaction: Ethyl ethanoate
	b.	Methyl ethanoate
	C.	Propyl methanoate
	d.	Methyl propanoate
2)	produ	balanced chemical reactions for the alkaline hydrolysis of the following. Name the cts for each reaction: Ethyl ethanoate
	b.	Methyl ethanoate

Fats and oils

 Fats and oils are basically esters made from propan-1,2,3-triol or glycerol (a triol) and long chain carboxylic acids called fatty acids:

$$\begin{array}{c|c}
 & O \\
 & \downarrow \\$$

- Its melting point determines whether it is a fat or oil.
- Its melting point is determined by the strength of the VDW forces of attraction.

Fats are solids:

If its melting point is above room temperature it is a solid which makes it a fat, eg margarine and butter.

These tend to have saturated fatty acids allowing them to pack efficiently:

Oils are liquids

If its melting point is below room temperature it is a solid which makes it an oil, eg olive oil.

These tend to have unsaturated fatty acids. The chains are bent and don't pack together as efficiently:

• All fats and oils are basically esters (tri esters) which means they can be hydrolysed:

Hydrolysis of fats and oils:

• The sodium carboxylate can be converted back to a carboxylic acid by the reaction with an acid, HCl.

Biodiesel:

- Often referred to as 'transesterification' reactions.
- Vegetable oils like rapeseed are often used.
- The R group in the biodiesel comes from the fatty acid.
- The molecules have the same properties as diesel.

Carbon neutral:

- A common misconception is that biodiesel is carbon neutral.
- In terms of CO₂ taken in to make the fuel and CO₂ given out during combustion, they are?
- It doesn't however include all the processing to take it from seed to biodiesel.
- Planting, watering, harvest, transporting etc

Questions:

1)	 State and explain the difference between fats and oils. In your answer you should include: The physical states The intermolecular forces Features in the structure responsible for its physical state The packing of the fats / oils
2)	Stearic acid is a common fatty acid, $CH_3(CH_2)_{16}COOH$. a. Draw the molecule formed when 3 of these molecules react with propan1,2,3 triol:
	b. Would this triester be a fat or an oil? Explain your answer
	c. Write an equation for the alkaline hydrolysis of this triester, draw a circle around the 'soap molecule'
	d. How could the soap be converted into stearic acid? Write an equation to show this:

e. The molecule below is often found in rapeseed oil:

Write a chemical equation for its conversion into biodiesel:

Is this fuel carbon neutral? Explain your answer:

Acyl chlorides

Introduction to acyl chlorides

• Acyl chlorides have the general formula:

Has the functional group COCI

Naming:

- All acyl chlorides end in 'oyl chloride'
- The COCI group is the priority group so counting starts from this carbon:

Ethanoyl chloride

3 methyl butanoyl chloride

Naming acyl chlorides

• Give the IUPAC name of the following:

Structure	IUPAC name
CH ₃ CH ₂ CH ₂ CH ₂ COCI	
(CH ₃) ₂ CHCH ₂ COCI	
CH ₃ CH ₂ CH(CH ₃)CH ₂ COCI	

Reactions of acyl chlorides:

- The acyl chlorides are very reactive.
- The CI is always substituted with an O containing group or an N containing group.
- HCl is always given off white fumes are seen as they react with water vapour in the air

1) With water:

• The reaction with water gives the carboxylic acid:

Example:

2) With alcohol:

• The reaction with alcohol gives the ester:

Example:

3) With ammonia:

• The reaction with ammonia gives the amide:

Example:

4) With primary amines:

• The reaction with primary amines gives the N substituted amide:

Example:

Nucleophilic addition - elimination reaction of the acyl chlorides

Summary:

• All acyl chlorides undergo the following reaction:

The mechanism:

• The mechanism by which this happens is as follows and they all follow this mechanism:

1) With water:

The mechanism:

2) With alcohol:

Mechanism:

3) With ammonia:

The mechanism:

4) With primary amines:

The mechanism:

Questions:

- 1) Write balanced chemical equations for the following:
 - a. Ethanoyl chloride and water
 - b. Methanoyl chloride and ethanol
 - c. Ethanoyl chloride and ammonia
 - d. Ethanoyl chloride and methylamine
 - e. For each of the following reactions above. Name the organic product formed

2) Write out the mechanisms for 1a - d:

Acid anhydrides:

Introduction to acid anhydrides

• Acid anhydrides are made from the elimination of water from 2 carboxylic acids:

Example:

Reactions of acid anhydrides:

- The acid anhydrides are more reactive than carboxylic acids but less than acyl chlorides.
- The RCOO is always substituted with an O containing group or an N containing group. (instead of the Cl in acyl chlorides).
- A carboxylic acid is always given off (instead of HCl in the acyl chlorides)

1) With water:

The reaction with water gives the carboxylic acid:

Example:

2) With alcohol:

The reaction with alcohol gives the ester:

3) With ammonia:

• The reaction with ammonia gives the amide:

4) With primary amines:

• The reaction with primary amines gives the N substituted amide:

Nucleophilic addition - elimination reaction of the acid anhydrides

Summary:

• All acid anhydrides undergo the following reaction:

The mechanism:

• The mechanism Is not required but they **all** follow the general mechanism:

Nucle	ophiles:	Leaving groups			
Nu -	<u>— н</u>	W			
НО — Н	H₂N H	CI			
RO — H	RHN — H	RCOO			

Aspirin:

- Ethanoic anhydride is used instead of the acyl chloride as it is:
 - Cheaper
 - Less reactive / corrosive therefore safer to use
 - Doesn't form HCl fumes

Questions:

- 1) Write balanced chemical equations for the following:
 - a. Ethanoic anhydride and water
 - b. Methanoic anhydride and ethanol
 - c. Ethanoic anhydride and ammonia
 - d. Ethanoic anhydride and methylamine
 - e. For each of the following reactions above. Name the organic products formed
- 2) Have a go at the mechanism for 1b: