1.10 Equilibria and Kp

AS review

- Consider the reaction:
 - $2SO_{2(g)} \qquad + \qquad O_{2(g)} \qquad \Longrightarrow \qquad 2SO_{3(g)}$

Characteristics of the dynamic equilibrium

- 1) The rate of the forward reaction is equal to the rate of the reverse reaction
- 2) The concentration of the reactants and products are unchanged under stable conditions

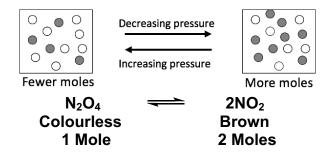
Le Chatelier's Principle

When a reaction at equilibrium is subject to a change in concentration, pressure or temperature, the position of the equilibrium will move to counteract the change.

1) Changing concentration – Position of equilibria shifts, K_c unchanged

$$H_{2(g)}$$
 + $I_{2(g)}$ \longrightarrow $2HI_{(g)}$ Colourless

Increasing concentration:


- Adding H₂ increases the concentration of H₂
- Equilibrium shifts to the products
- To reduce the concentration of the H₂ counteracting the change
- The mixture will become less purple

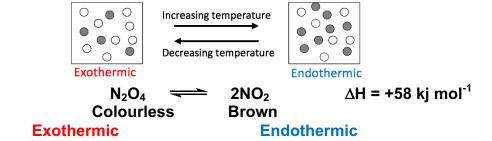
Decreasing concentration:

- Removing I₂ decreases the concentration of I₂
- Equilibrium shifts to the reactants
- To increase the concentration of the I₂ counteracting the change
- The mixture will become more purple

The equilibrium moves to oppose the change in concentration

2) Changing pressure – gases only - Position of equilibria shifts, Kc unchanged

Increasing pressure:

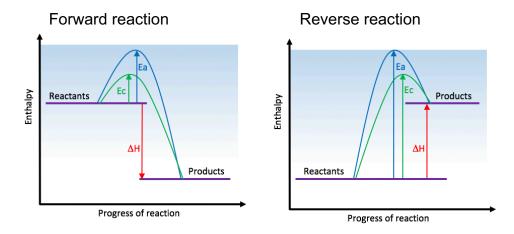

- Equilibrium shifts to the reactants
- This is the side with fewer moles of gas
- This will reduce the pressure counteracting the change
- The mixture will become less brown

Decreasing pressure:

- Equilibrium shifts to the products
- This is the side with more moles of gas
- This will increase the pressure counteracting the change
- The mixture will become more brown

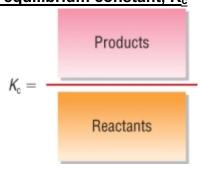
The equilibrium moves to oppose the change in pressure

3) Changing temperature - Position of equilibria shifts, Kc changes


Increasing temperature:

- Equilibrium shifts to the products
- As this is the endothermic direction
- This will decrease temperature counteracting the change
- The mixture will become more brown

Decreasing temperature:


- Equilibrium shifts to the reactants
- As this is the exothermic direction
- This will increase temperature counteracting the change
- The mixture will become less brown

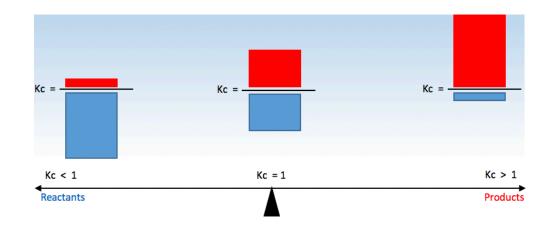
4) The effect of a catalyst on an equilibrium

- A catalyst has no effect on the position of the equilibrium.
- A catalyst **speeds up the forward and reverse reaction** so it will only increase the rate at which equilibrium is achieved.

The equilibrium constant, K_c

$$K_c = \frac{[PRODUCTS]^p}{[REACTANTS]^r}$$

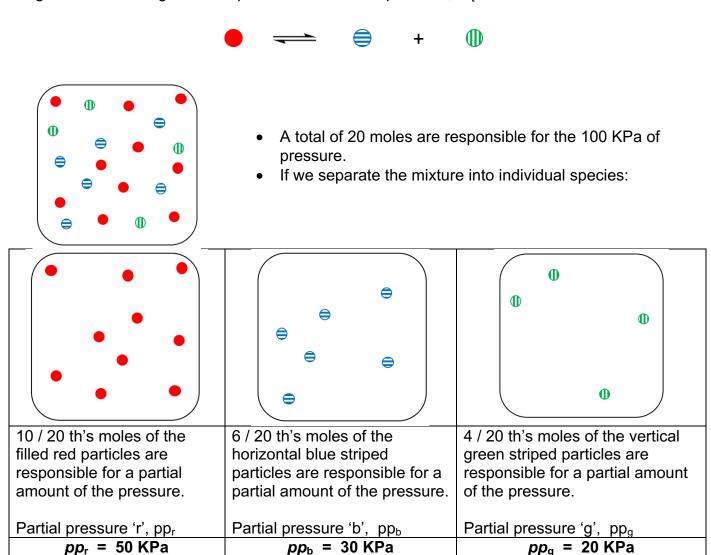
Writing expressions for K_c:


• At equilibrium the concentrations of NO₂ and N₂O₄ are constant:

$$N_2O_{4(g)}$$
 \longrightarrow $2NO_{2(g)}$

$$K_c = \frac{[NO_2]^2}{[N_2O_4]}$$

What is the significance of a Kc


• **K**_c is a mathematical representation of the ratio of **products**: **reactants**.

K_p and equilibria:

- $\bullet \quad K_c \, and \, K_p$ are both expressions to show the position of an equilibria
- · c stands for an equilibrium where the individual species are measured using concentrations
- p stands for an equilibrium where the individual species are measured using partial pressures:

Imagine a mixture of gases at equilibrium with a total pressure, $P_{\rm t}$ = 100 KPa

The partial pressures, **pp**, are essentially proportional to the concentrations

The total pressure, P_t is equal to the sum of all of the partial pressures:

$$P_{t} = P_{r} + P_{b} + P_{g}$$

 $100 = 50 + 30 + 20$

Writing K_p

- The units of K_p will depend upon the units that pressure is measured in:
 - Pa KPa mmHg Atm MPa
- It will also depend on the molar ratio in the equilibria equation.

Example:

$$2SO_{3(g)} = 2SO_{2(g)} + O_{2(g)}$$

$$K_p = \underbrace{pp_{products}}_{pp \ reactants}$$

$$K_p = \underbrace{(pp \ so_2)^2 \ x \ pp \ O_2}_{(pp \ so_3)^2}$$

Units:

$$K_{p} = \frac{Pa^{2} \times Pa}{Pa^{2}}$$

$$K_{p} = \frac{Pa^{2} \times Pa}{Pa^{2}}$$

K_p = Pa

Questions:

Write K_p expressions for the following equilibria, for each, work out the units

- 1. N_2 + $3H_2$ \longrightarrow $2NH_3$ Units: Pa
- 2. N_2O_4 \longrightarrow 2NO₂ Units: mm Hg
- 3. 2HI \longrightarrow H₂ + I₂ Units: KPa
- 4. $2SO_2$ + O_2 \Longrightarrow $2SO_3$ Units: atm

5. 2A + B_2 \longrightarrow 2AB Units: MPa

The equilibrium position and Kp

1) Changing pressure - gases only - Position of equilibria shifts, Kc unchanged

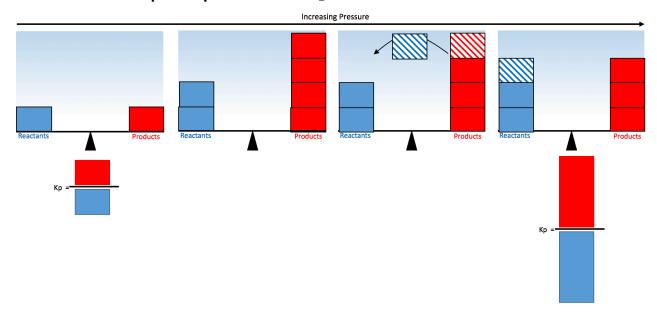
N₂O₄ \Longrightarrow 2NO₂
Colourless Brown
1 Mole 2 Moles

Increasing pressure:

- a) Equilibrium position moves to left:
- Equilibrium shifts to the reactants
- This is the side with fewer moles of gas
- This will reduce the pressure counteracting the change
- The mixture will become less brown

b) K_p is unchanged:

$$N_2O_4 \implies 2NO_2$$


Equilibria shifts to LHS

 $K_p = \frac{(pp \, NO_2)^2}{(pp \, N_2O_4)}$ The increase in pressure also increases the partial pressure of NO₂

Partial pressure of N₂O₄ increases

This maintains K_D

- With an increase in pressure **both partial pressures increase** (smaller volume)
- Equilibrium shifts to the side with fewer moles of gas (LHS) to relieve pressure.
- This will increase the partial pressure further of the N₂O₄
- The partial pressure of NO₂ decreases slightly due to the shift in equilibrium. The initial increase in the partial pressures at the start outweighs this slight decrease resulting in an overall **increase partial pressure of NO₂**

Decreasing pressure:

- a) Equilibrium position moves to right:
- Equilibrium shifts to the products
- This is the side with more moles of gas
- This will increase the pressure counteracting the change
- The mixture will become more brown
- b) K_p is unchanged:

$$N_2O_4 \implies 2NO_2$$

Equilibria shifts to RHS

$$K_{p} = \frac{(pp \, NO_{2})^{2}}{(pp \, N_{2}O_{4})}$$
The decrease in pressure also decreases the partial pressure of NO₂

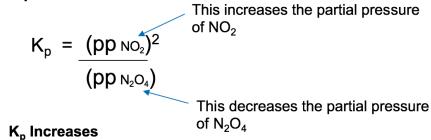
$$(pp \, N_{2}O_{4})$$
Partial pressure of N₂O₄ decreases is maintains K_{p}

This maintains K_p

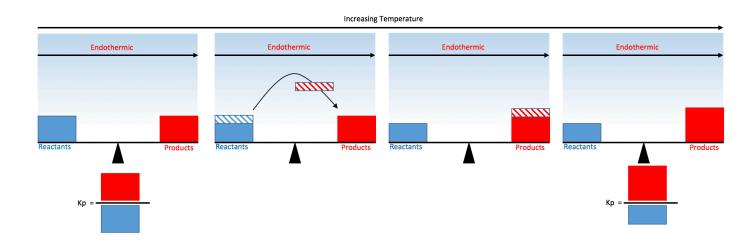
- With a decrease in pressure both partial pressures decrease (larger volume)
- Equilibrium shifts to the side with more moles of gas (RHS) to increase pressure.
- This will decrease the partial pressure further of the N₂O₄
- The partial pressure of NO₂ increases slightly due to the shift in equilibrium. The initial decrease in the partial pressures at the start outweighs this slight increase resulting in an overall decrease partial pressure of NO₂

2) Changing temperature - Position of equilibria shifts, Kc changes

$$N_2O_4$$
 \Longrightarrow $2NO_2$ $\Delta H = +58 \text{ kj mol}^{-1}$ Colourless Brown Exothermic Endothermic


Increasing temperature:

- a) Equilibrium shifts to the right hand side
- As this is the endothermic direction
- This will decrease temperature counteracting the change
- The mixture will become more brown


b) K_p is increases:

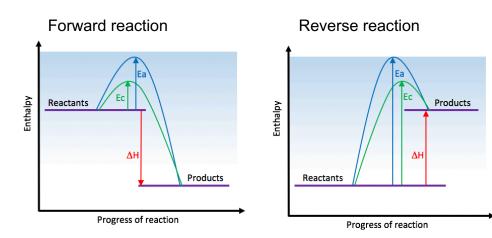
$$N_2O_4 \implies 2NO_2$$

Equilibria shifts to RHS

- As equilibria shifts to the products, pp NO₂ increases
- As equilibria shifts to the products, pp N₂O₄ decreases
- Products increase / reactants decrease, therefore Kp increases

Decreasing temperature:

- a) Equilibrium shifts to the reactants
- As this is the exothermic direction
- This will increase temperature counteracting the change
- The mixture will become less brown
- b) K_p is decreases:

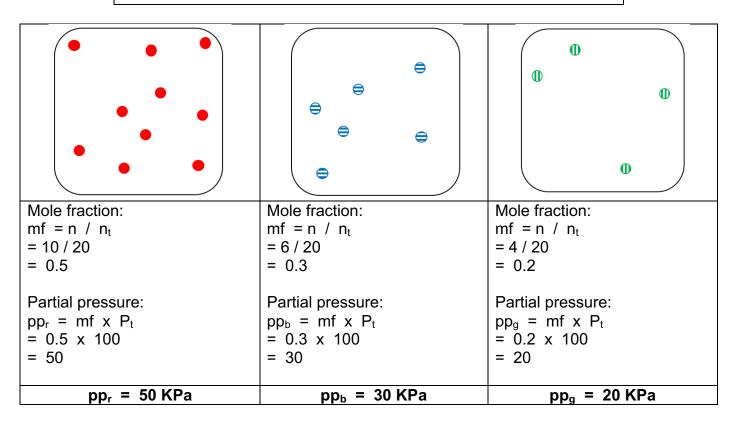

$$N_2O_4 \implies 2NO_2$$

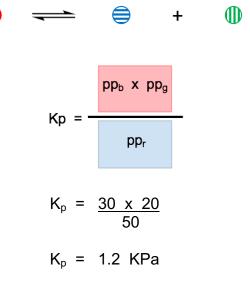
Equilibria shifts to LHS

 $K_{p} = \frac{(pp NO_{2})^{2}}{(pp N_{2}O_{4})}$ This increases the partial pressure of $N_{2}O_{4}$ $K_{p} \text{ Decreases}$ This increases the partial pressure of $N_{2}O_{4}$

- As equilibria shifts to the products, pp NO₂ decreases
- As equilibria shifts to the products, pp N₂O₄ increases
- Products decrease / reactants increase, therefore **Kp decreases**

3) The effect of a catalyst on an equilibrium


- A catalyst has no effect on the position of the equilibrium.
- A catalyst **speeds up the forward and reverse reaction equally** so it will only increase the rate at which equilibrium is achieved.


How are partial pressures calculated:

- Remember, each individual species exerts their own partial pressure, which, when all added together gives the total pressure.
- The partial pressure is due to the mole fraction of the total number of moles of that species present in the mixture:

Partial pressure = mole fraction x total pressure

Mole fraction = <u>number of moles of gas</u> total number of moles of gas

Example:

The following equilibria was found to contain 3 moles of H_1 , 6 moles of H_2 and 1 moles of H_2 . The total pressure of the sealed vessel was 100KPa

2HI
$$\longrightarrow$$
 H₂ + I₂

Moles of gas: 3 6 1

Mole fraction: 3/10 6/10 1/10

Partial pressure: 3/10 x 100 6/10 x 100 1/10 x 100

Partial pressure: 30 60 10

$$K_p = (\underline{pp H_2}) \times (\underline{pp I_2})$$
$$(Pp HI)^2$$

$$K_p = \frac{60 \times 10}{(30)^2}$$

$$K_p = \frac{600}{900}$$

 $K_p = 0.67$ No units (cancel out)

Questions: Give all answers to 3SF

1) The following equilibria was found to contain 5 moles of HCl, 10 moles of H_2 and 8 moles of Cl_2 . The total pressure of the sealed vessel was 50KPa

2HCI \Longrightarrow H₂ + Cl₂

- a) Write an expression for K_p
- b) Calculate the mole fractions for each gas
- c) Calculate the partial pressures for each gas
- d) Calculate K_p for the equilibria. Include units in your answer.

Ans = 3.18

2) The following equilibria was found to contain 5 moles of NO₂ and 8 moles of N₂O₄. The total pressure of the sealed vessel was 760 mmHg

$$N_2O_4 \longrightarrow 2NO_2$$

Calculate K_p. Include units and show all working out clearly:

3) The following equilibria was found to contain 5 moles of SO_2 , 5 moles of O_2 and 8 moles of SO_3 . The total pressure of the sealed vessel was 2 atm

$$2SO_2 + O_2 \implies 2SO_3$$

Calculate K_p . Include units and show all working out clearly:

Ans =
$$4.59$$

- 4) An 80 dm³ reaction vessel contains a mixture of hydrogen and oxygen with a total pressure of 300 kPa. The partial pressure of oxygen 20 kPa.
 - a) Calculate the partial pressure of hydrogen.

b) Calculate the mole fraction of hydrogen and oxygen.

5) The following equilibria was established. It has a K_p of 50 and the partial pressures of H_2 and I_2 are 250 and 160 respectively.

2HI
$$\Longrightarrow$$
 H₂ + I₂

a) Write an expression for K_p

b) Rearrange the expression and calculate the partial pressure of HI

Ans =
$$28.3$$

6) The following equilibria was established. It has a K_p of 7.48×10^{-8} kPa⁻². The mixture has a total pressure of 5000KPa. The partial pressures of H_2 and NH_3 are 2814 and 1250 respectively.

$$N_{2(g)} + 3H_{2(g)} \implies 2NH_{3(g)}$$

Calculate the mole fraction of N₂

Challenging:

1) 3.00 moles of SO_{3(g)} are placed into an 8.00 dm³ container and heated to 1105 K.

$$2SO_3(g) \longrightarrow 2SO_2(g) + O_2(g)$$

- At equilibrium the mixture contains 0.58 mol of O₂(g).
- The total pressure of the equilibrium mixture is 3.45×10^6 Pa.
- Use this information to calculate K_p
 - a) Determine equilibrium moles of all gases.

- b) Determine the mole fractions of each of the gases.
- c) Calculate the partial pressures.
- d) Write the expression for K_p .
- e) Calculate K_p and state its units.

2) 9.20 g of $N_2O_4(g)$ was heated to a temperature of 340 K at a pressure of 13.3 kPa.

$$N_2O_4(g)$$
 \Longrightarrow $2NO_2(g)$

Once equilibrium had been reached, 70% of the $N_2O_4(g)$ had dissociated.

Use this information to calculate K_p