1.7 REDOX

Oxidation and Reduction:

- Oxidation and reduction reactions can be identified by looking at the reaction in terms of electron transfer:
- Our understanding of oxidation and reduction was limited to reactions involving oxygen (and hydrogen):

Mg + $\frac{1}{2}$ O2 \rightarrow MgO

• Convert these to ionic and half equations and you can see clearly how the electrons are transferred:

Magnesium:

 $Mg \rightarrow Mg^{2+} + 2e^{-}$

- Magnesium has been oxidised as it has gained oxygen.
- But it has also lost 2 electrons:

Oxygen:

 $^{1}/_{2}$ + $2e^{-}$ \rightarrow 0^{2}

- Oxygen has been reduced as it has lost oxygen.
- But each oxygen has also **gained 2 electrons**:

New definitions:

Oxidation
Is
Loss of electrons

Reduction

Is

Gain of electrons

- Oxidation and reduction must occur simultaneously as all reactions involve a movement of electrons.
- These reactions are given the shorthand term of REDOX reactions. As they involve

REDuction and **OX**idation

Example:	Identify	what has	been	oxidised	and	reduced:
LAaiiipie.	IUCIILIIY	wiiat iias	neen	UNIUISEU	anu	ieuuceu.

1) Overall chemical equation:

 $Na_{(s)}$ + $HCI_{(aq)}$ \rightarrow $NaCI_{(aq)}$ + $^{1}/_{2}H_{2(g)}$

2) Covert to ionic equation and identify spectator ions:

 $Na_{(s)}$ + $H^{+}_{(aq)}$ + $CI^{-}_{(aq)}$ + $Na^{+}_{(aq)}$ + $CI^{-}_{(aq)}$ + $I^{-}_{(aq)}$

3) Remove spectator ions and identify what will be in each $\frac{1}{2}$ equation:

 $Na_{(s)}$ + $H^{+}_{(aq)}$ \rightarrow $Na^{+}_{(aq)}$ + $^{1}/_{2}H_{2(q)}$

4) Write the half equation and determine REDOX using OILRIG:

 $Na_{(s)}$ \rightarrow $Na^{+}_{(aq)}$ + e^{-} Oxidation – lost electron $H^{+}_{(aq)}$ + e^{-} \rightarrow $^{1}/_{2}H_{2(g)}$ Reduction – gained electron

Example questions:

1) Look at the following reactions and decide whether they are oxidation or reduction reactions:

a. Ca
$$\rightarrow$$
 Ca²⁺ + 2e⁻

b.
$$Cl_2$$
 + $2e^ \rightarrow$ $2Cl^-$

c.
$$2Br^{-} \rightarrow Br_{2} + 2e^{-}$$

2) Convert the following reaction into half equations, then identify the species that has been oxidised and which species has been reduced:

Overall reaction:

$$2KI_{(aq)}$$
 + $CI_{2(aq)}$ \rightarrow $2KCI_{(aq)}$ + $I_{2(aq)}$

Ionic equation:

Half equations and state which is oxidation and which is reduction:

Oxidation states (numbers)

- It is used to describe the number of electrons used to bond with another atom.
- It is also used for combining powers of atoms.
- It is a type of 'book keeping' for electrons.
- It is a number describing the movement of electrons and is found by the application of certain rules:

Rules for assigning Oxidation States

1) Oxidation state of an element = 0

Na Ar O₂ H₂ All have Ox state: 0

2) The oxidation state of a monatomic ion = the charge on the ion.

 $Na^{1+} = +1$ $Cl^{1-} = -1$ $Al^{3+} = 3+$

3) The sum of the oxidation states in a neutral compound = 0

4) The sum of the oxidation states in a polyatomic ion (SO_4^{2-}) = charge on the polyatomic ion

OH ¹⁻		NH ₄ ¹⁺		SO ₄ ²⁻	
-2	+1		+1 +1 +1 +1	+6	
_4		+1		_4	•

5) Some elements have fixed oxidation states in a compound:

Group 1	Group 2	Group 3	Hydrogen	Oxygen	Fluorine	Group 7
+1	+2	+3	+1	-2	-1	-1
			Except in metal hydrides, MH H = -1	Except in peroxides, H_2O_2 $O = -1$		Except when combined with oxygen as 'ates' Variable

Oxidation numbers in chemical names:

• Some elements form compounds where they could have a different charge / oxidation states / number.

Transition metals:

Compound	Name	Element with different oxidation state	Oxidation state of that element
FeCl ₂	Iron (II) chloride	Fe	+2
FeCl ₃	Iron (III) chloride	Fe	+3

- Roman numerals indicate the oxidation number of the element before it.
- This also occurs with oxyanions:

Oxo - anions: 'ate' molecules

Oxo - anion	Name	Element with different oxidation state	Oxidation state of that element
NO ₂ -	Nitrate (III)	N	+3
NO ₃ -	Nitrate (V)	N	+5

• These are negative molecules that contain an oxygen atom.

Oxo - acids:

Oxo - acid	Name	Element with different oxidation state	Oxidation state of that element	
HNO ₂	Nitric (III) acid	N	+3	
HNO ₃	Nitric (V) acid	N	+5	

• These are acids containing oxygen.

Working out formula from oxidation states:

Example:

Give the formula for potassium chlorate (III)

- Potassium is in Gp 1 so its oxidation state = +1
- > Chlorate means that chlorine is directly bonded with oxygen.
- Oxygen always has an oxidation state = -2
- ➤ Chlorate (III) tells you the oxidation state of chlorine = +3

```
K CI O +1 +3 -2
```

- > As the compound is neutral, the sum of the oxidation states must add up to = 0
- ➤ So 2 x 2- required, therefore 2 x O

```
K CI O_{x2}
+1 +3 -2
-2
Totals: +4 -4 which = 0
```

Have a go at the following:

Manganese (IV) oxide Sodium sulphate (VI)

Sodium sulphate (IV) lodate (V) with a 1- charge

Working out oxidation states from formula: Example:

Work out the oxidation state of manganese in KMnO₄

- ➤ **K** is in Gp 1 so has an oxidation state = +1
- > **O** has a fixed oxidation state = -2 and we have 4 of those
- > The compound is neutral overall:

• **Mn** must therefore have an oxidation state of **+7** in order for the sum of the oxidation states to = 0

Have a go at the following: Find the oxidation state of the element in bold

 VO_3 $MgSO_3$ $NaCIO_3$ $Na_2Cr_2O_7$

Oxidation states and REDOX reactions

• As oxidation states show the movement of electrons in a reaction it is possible to use these to identify what has been oxidised and what has been reduced:

REDOX:

• In this reaction Mg has lost 2e

Oxidation

• In this reaction each H⁺ has gained 1e

Reduction

Oxidation states:

- Mg oxidation state: 0 → +2
 Oxidation state has increased → Oxidation
- H⁺ oxidation state: +1 → 0
 Oxidation state has decreased → Reduction

Summary:

Oxidation is an increase in oxidation state

<u>Reduction</u> is a decrease in oxidation state
(Its oxidation state REDUCES)

	Oxidation	
⊥ 1	state	
	+7	
	+6	
	+5	
ା ଚ୍ଚା	+4	Reduction
Oxidation	+3	ା ଜୁ
	+2	ୗ 🚉
∣ő∣	+1	
	0	∏
	-1	
	-2	
	-2 -3 -4] [
	-4	*

Other examples:

• Adding the oxidation state makes it even easier:

- Fe oxidation state has been increased from 0 → +3 Oxidised (electrons lost)
- Cl oxidation state has been reduced from 0 → -1 Reduced (electrons gained)

Have a go at these:

2Mg_(s) + O_{2(g)} \rightarrow 2MgO_(s)

- ___ oxidation state has gone from ___ → ___ therefore has been _____
- ___ oxidation state has gone from ___ → ___ therefore has been _____

2) $Mg_{(s)} + H_2SO_{4(aq)} \rightarrow MgSO_{4(aq)} + H_{2(g)}$

- ___ oxidation state has gone from ___ → ___ therefore has been _____
- ___ oxidation state has gone from ___ → ___ therefore has been _____

2) $\text{Li}_{(aq)} \quad + \quad \text{HNO}_{3(aq)} \quad \rightarrow \quad \text{LiNO}_{3(aq)} \quad + \quad \quad \text{H}_{2(g)}$

- ___ oxidation state has gone from ___ → ___ therefore has been _____
- ___ oxidation state has gone from ___ → ___ therefore has been _____

Oxidising and reducing agents:

$$2Fe_{(s)}$$
 + $3Cl_{2(g)}$ \rightarrow $2FeCl_{3(s)}$

- Fe oxidation state has been increased from 0 → +3 Oxidised (electrons lost)
- Cl oxidation state has been reduced from 0 → -1 Reduced (electrons gained)

So:

- Fe can only lose its electrons if there is a species to accept these electrons
- As CI accepted the electrons from iron for it to be oxidised we say that chlorine is the oxidising agent
- CI can only gain electrons if there is a species to lose these electrons
- As **Fe** gave the electrons to chlorine for it to be reduced we say that **iron** is the **reducing agent**:

Oxidation – Reducing agents Is
Loss of electrons

Reduction – Oxidising agents Is Gain of electrons

Basically:

If it is oxidised it is a reducing agent

If it is reduced it is an oxidising agent

Have a go at these:

1)

$$2Ca_{(s)}$$
 + $O_{2(g)}$ \rightarrow $2CaO_{(s)}$

• ___ oxidation state has gone from ___ → ___ therefore has been _____

This makes it an _____ agent.

• ___ oxidation state has gone from ___ → ___ therefore has been _____

This makes it a _____ agent.

2)

$$Sr_{(s)}$$
 + $H_2SO_{4(aq)}$ \rightarrow $SrSO_{4(aq)}$ + $H_{2(g)}$

• ___ oxidation state has gone from ___ → ___ therefore has been _____

This makes it an _____ agent.

oxidation state has gone from ___ → ___ therefore has been _____
 This makes it a _____ agent.

3)

$$Na_{(s)}$$
 + $HNO_{3(aq)}$ \rightarrow $NaNO_{3(aq)}$ + $H_{2(l)}$

• ___ oxidation state has gone from ___ → ___ therefore has been _____

This makes it an _____ agent.

• ___ oxidation state has gone from ___ → ___ therefore has been _____

This makes it a _____ agent.

Constructing simple half equations:

4) Hydrogen peroxide to oxygen

Write species for the equation and make sure the atoms / ions and the charges balance by adding electrons on the appropriate side:							
	Example: The oxidation of Fe to Fe ³⁺ :						
	Fe	\rightarrow	Fe ³⁺	+	3e ⁻		
The reduc	tion of chlori	ne to chlorid	le:				
	½CI₂	+	e ⁻	\rightarrow	CI		
Example:	ting comple tion of MnO	_	tions:				
Step 1: W	rite the read	ctants and p	oroducts ma	aking sure	the RED	OX element balances:	
Mı	nO ₄ -		\rightarrow	Mn ²⁺			
Step 2: Ba	alance the d	xygen's by	adding wat	er to the o	pposite	side:	
M	nO ₄ -		\rightarrow	Mn ²⁺	+	4H ₂ O	
Step 3: Ba	alance the h	ydrogen's	by adding h	ydrogen id	ons to th	e opposite side:	
M	nO ₄ + 8	H⁺	\rightarrow	Mn ²⁺	+	4H ₂ O	
Step 4: Ba	alance the d	harges usi	ng electrons	s :			
Mı	nO ₄ + 8	H ⁺ + 5	ie⁻ →	Mn ²⁺	+	4H ₂ O	
Have a go at these: 1) Bromide to bromine							
2) Niti	ric acid to n	itrogen dio	xide				
3) Sul	phuric acid	to Sulphur	dioxide				

Constructing redox equations from half equations

- This is done by balancing the numbers of electrons **lost** by one half equation with those being **gained** by another half equation.
- Any species the same on both sides can then be cancelled.

Example:

Step 1: Balance the half equations using the electrons:

2Fe
$$\rightarrow$$
 2Fe³⁺ + 6e⁻ x2
3Cu²⁺ + 6e⁻ \rightarrow 3Cu x3

Step 2: Add the half equations together and cancel out the electrons:

This gives:

2Fe +
$$3Cu^{2+}$$
 \rightarrow 3Cu + $2Fe^{3+}$

Have a go at these:

1) Al
$$\rightarrow$$
 Al³⁺ + 3e⁻

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

2) Cu
$$\rightarrow$$
 Cu⁺ + e⁻
MnO₄⁻ + 8H⁺ + 5e⁻ \rightarrow Mn²⁺ + 4H₂O

Constructing REDOX equations from text:

- Identify the REDOX species and write balanced half equations.
- Balance the 2 half equations by balancing the numbers of electrons **lost** by one half equation with those being **gained** by another half equation.
- Any species the same on both sides can then be cancelled.

Example:

Sulphuric acid reacts with hydrogen peroxide forming sulphur dioxide and oxygen

Step 1: Identify and construct the 2 redox half equations balancing O with H₂O and H with H⁺:

$$H_2SO_4 + 2H^+ + 2e^- \rightarrow SO_2 + 2H_2O$$

 $H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$

Step 2: Balance the electrons:

$$H_2SO_4 + 2H^+ + 2e^- \rightarrow SO_2 + 2H_2O$$

 $H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$

Step 3: Add the half equations together and cancel out the electrons / any other species on both sides:

$$H_2SO_4 + 2H^+ + 2e^- \rightarrow SO_2 + 2H_2O$$
 $H_2O_2 \rightarrow O_2 + 2H^+ + 2e^ H_2SO_4 + 2H^+ + 2e^- + H_2O_2 \rightarrow SO_2 + 2H_2O + O_2 + 2H^+ + 2e^-$

To give:

$$H_2SO_4 + H_2O_2 \rightarrow SO_2 + 2H_2O + O_2$$