1B - The Mole

Atomic Masses

Protons, electrons and neutrons

Sub-Atomic	Atomic	Atomic	working
Particle	Mass	Charge	it out
Proton	1	+1	bottom
Electron	1/2000	-1	bottom
N eutron	1	0	top - bottom

- From GCSE this table shows that only protons and neutrons have a mass.
- Since different elements have different atoms.
- These atoms have different numbers of protons and neutrons (and electrons).
- This means that different elements atoms must have different masses.

- So an atom of one element must have a different mass from another element, we call this
 the Mass Number.
- The number of protons determines which element an atom is and the bottom number tell us this, we call this the **Atomic number**.

Examples:-

1) Lithium

⁷ Li

- The top number is the **Mass number**. This means that the total number of **protons and neutrons are 7**.
- The bottom number is the **Atomic number. This is the number of protons**.
- Because an **atom is neutral**, this means that this is also the number of electrons. This atom has **3 protons and 3 electrons**.
- If we take the **Atomic number (Z) from the Mass number (A)** we get the number of neutrons. **7-3=4 neutrons**.

2) Nitrogen

¹⁴ N

- An atom of nitrogen is twice as heavy as an atom of Lithium.
- The top number is the **mass number**. This means that the total number of **protons and neutrons are 14**.
- The bottom number is the Atomic number. This is the number of protons.
- Because an **atom is neutral**, this means that this is also the number of electrons. This atom has **7 protons and 7 electrons**.

• If we take the **Atomic number (Z) from the Mass number (A)** we get the number of neutrons. **14-7=7 neutrons**.

Isotopes

An atom of the same element that has the same number of protons and electrons but a different number of neutrons.

- As the atom has the same number of protons and electrons it will have the same chemical properties.
- They are all hydrogen atoms because they all have the **same number of protons**
- · Hydrogen can be used as an example:-

Measurement of relative masses

- Because Chemistry is about reacting ratios we have to measure the amount of reacting particles of each reactant.
- We now know that each atom (and therefore molecules) have different masses (because they have different numbers of protons and neutrons), we have to be able to weigh out a number of particles of reactants to react with each other.
- Since atoms are so small we give them a mass scale of their own.
- This scale is called:

Unified atomic mass unit, u: $1u = 1.66 \times 10^{-24}$ g

This is basically the masses of a proton / neutron.

The mass of a carbon - 12 atom = 12u

The mass of 1/12th of a carbon - 12 atom = 1u

We have to state the Atomic mass number of the atom as elements usually have isotopes:

There is a carbon - 13 atom containing an extra neutron, this would have an mass of 13u!!

 This is not the only thing we have to be careful of, there are 4 different types of masses and we have to use the correct one depending what we are referring to:

1) Relative isotopic mass:

 We use this one when we are only referring to one isotope of an element ¹⁶O has a mass of 16u

2) Relative atomic mass:

• We use this one when we are referring to the mixture of naturally occurring isotopes in of an element (the average by % - later)

3) Relative molecular mass, (Mr):

- We use this one when we are referring to simple molecules. Basically covalently bonded molecules, Cl₂, H₂O:
- Water, H₂O has a mass of 18u

H
$$1 \times 2 = 2$$

O $16 \times 1 = \frac{16}{18}$

4) Relative formula mass:

- We use this one when we are referring to ionic compounds and giant covalent compounds. Such as CaBr₂, SiO₂
- Calcium bromide, CaBr₂ has a mass of 199.9u

However for convenience we often use relative molecular mass instead.

Calculating Relative Atomic Mass (RAM) from % abundance)

Use the formula:

$$RAM = \frac{(\% \times Ar) + (\% \times Ar) +}{100} \dots$$

 Mass spectroscopy is the analytical method we use to obtain the % abundances for the isotopes.

Worked example:

RAM of Neon isotopes	Abundance %
20	90.9
21	0.2
22	8.9

$$RAM = (90.9 \times 20) + (0.2 \times 21) + (8.9 \times 22)$$

$$100$$

$$RAM = 20.18$$

Have a go for Si:

RAM of silicon isotopes	% Abundance
28	92.2
29	4.7
30	3.1

Amount of substance and the mole

- Since atoms are so small and therefore have such a small mass we have to measure them in large numbers.
- These large numbers are called a mole.
- The simplest way to understand the mole is to treat it as a word to describe a number:-

Dozen 12
Ton 100
Pony 20
Grand 1000
Mole 6.02x10²³ (Avogadro's constant, N_A)

- The mole is such a large number as it takes that many atoms to be able to measure a mass in g.
- It does appear to be quite an unusual number but it has been thought out:

Basically in 12g of carbon-12 you would find 6x10²³ atoms of carbon.

 This number has been chosen to make it fit with the Atomic Masses from the Periodic Table:

```
1g of <sup>1</sup>H atoms would have 6 x 10<sup>23</sup> atoms of H
16g of <sup>16</sup>O atoms would have 6 x 10<sup>23</sup> atoms of O (atom is 16 x heavier than H)
32g of <sup>32</sup>S atoms would have 6 x 10<sup>23</sup> atoms of S (atom is 32 x heavier than H)
```

When you think about it like this it actually makes sense!!!

 In fact if you were to measure out 6x10²³ (A Mole) atoms of any element you would find that its mass is the same as its RAM:-

```
1 Mole of Sodium <sup>23</sup>Na 23g mol<sup>-1</sup>
1Mole of Magnesium <sup>24</sup>Mg 24g mol<sup>-1</sup>
1 Mole of Iron <sup>56</sup>Fe 56g mol<sup>-1</sup>
```

 A molecule is made up from more than 1 atom so the mass of 1 mole of that molecule will be the sum of the RAM

```
1 Mole of water H<sub>2</sub>O 18g mol<sup>-1</sup>
1Mole of Sodium Chloride NaCl 58.5g mol<sup>-1</sup>
```

Using Moles

- Because we can't actually count out molecules or atoms (moles) we convert it to something we can measure i.e. mass.
- If 1 Mole of water is 18g then 2 moles would be 36g. 3 moles would be 54g and 0.5 moles would be 9g.
- The numbers are not always this simple so a formula helps.

```
No. Moles = \frac{Mass}{Ar(Mr)} OR Moles = \frac{m}{Mr}
```

Types of Formula

Empirical Formula is the simplest ratio of atoms in a molecule. Molecular formulae is the actual ratio of atoms in a molecule

• This can be calculated using moles from percentage composition:-

Example 1

A sample of iron oxide was found to have 11.2g of iron and 4.8g of oxygen. Calculate the formula of this compound

Element	Fe		0
Masses	11.2		4.8
Divide by Ar	11.2 / 55.8		4.8 / 16
Moles	0.2	:	0.3
Divide by smallest	0.2 / 0.2	:	0.3 / 0.2
Ratio	1	:	1.5
Whole No Ratio	2	:	3
Empirical formula	Fe ₂ O ₃		

Example 2

A sample of hydrocarbon was found to have 1.20g of carbon and 0.25g of hydrogen. Calculate the Empirical formula of this compound. Then find out the molecular formula if the Mr = 58

Element	С		Н
Masses	1.20		0.25
Divide by Ar	1.20 / 12		0.25 / 1
Moles	0.10	:	0.25
Divide by smallest	0.10 / 0.10	:	2.5 / 0.10
Ratio	1	:	2.5
Whole No Ratio	2	:	5
Empirical formula		C ₂ H ₅	$(29 \times 2 = 58)$
Molecular formula		C ₄ H ₁₀	

Questions 1,2 p13 / 6,7 p35

Moles and gas volumes

Avogadro's hypothesis

Equal volumes of gases will have the same number of atoms / molecules

• This makes gases particularly easy to calculate 1 mole of any gas, no matter what it is, occupies the same volume (at RTP)

1 mole of any gas occupies 24dm³ (24000cm³) at room temperature and pressure.

· Again the numbers are not always simple so a general formula will help:-

$$Moles = \frac{V (dm^3)}{24}$$

Questions 1-3 p15 / 8 p35 / 3 p36

Moles and solution

Concentration:

- So far when we have looked at reacting quantities we have dealt with the mole.
- Many reactions in chemistry involve solutions.
- A solution is expressed as a number of moles in 1dm³ (1 litre or 1000cm³) of solvent (usually water).
- Concentration is the number of moles of specified entities in 1 dm³ of solution.

• We use square brackets to denote concentration [X]. (also known as **molarity**, **M**).

• For example – a solution of sodium hydroxide has a concentration of 1.0 Mol dm⁻³ (1.0M)

 $[NaOH_{(aq)}] = 1.0M$ This means there is 1 mole of sodium hydroxide dissolved in $1dm^3$ of water.

 $[NaCl_{(aq)}] = 2.0M$ This means there is 2 moles of sodium chloride dissolved in $1dm^3$ of water.

 $[KOH_{(aq)}] = 0.5M$ This means there is 0.5 mole of potassium hydroxide dissolved in 1dm³ of water.

- This is fine so long as we keep making up 1dm³ solutions.
- Most lab experiments only use a 100cm³ or so and making up 1000cm³ would be waste so we need to scale down:
- For example 500cm³ solution of sodium hydroxide has a concentration of 1.0 Mol dm⁻³ (1.0M)

 $500 \text{cm}^3 [\text{NaOH}_{(aq)}] = 1.0 \text{M}$: 0.5 moles of sodium hydroxide dissolved in 0.5 dm³ water. $2000 \text{cm}^3 [\text{NaCI}_{(aq)}] = 2.0 \text{M}$: 4 moles of sodium chloride dissolved in 2dm^3 of water. $100 \text{cm}^3 [\text{KOH}_{(aq)}] = 0.5 \text{M}$: 0.05 moles of sodium hydroxide dissolved in 0.1 dm³ of water.

The values are not usually as nice as this so we can use the following formula:-

Concentration = No. of moles
$$C = \underline{n}$$
 $V (dm^3)$ $V (dm^3)$

- Basically the number of moles per volume of solution.
- We usually like our formula to have **n**, **number of moles at the start:**

No. of moles = Concentration (Mol dm⁻³) x Volume (dm³)
$$n = C \times V (dm^3)$$

- However this formula assumes we are working in dm³ and we usually work in cm³.
- dm³ and cm³ are related by a factor of 1000 you must convert into dm³ by dividing cm³ by 1000

Standard solutions

- We can make solutions of known concentration using volumetric flasks. The easiest way of learning this is to try an example.
- We need 250cm³ of 0.1 mol dm³ solution of sodium hydroxide.
- Use the formula to calculate the No. of moles of sodium hydroxide –

No. of moles = Concentration (Mol dm^3) x Volume (cm³)

No. of moles = $0.1 \text{ Mol dm}^3 \text{ x } 250 \text{ cm}^3$

No. of moles = 0.025 Mol

- Now we know how many moles of sodium carbonate we need in 250 cm³ to make a 0.800 Molar solution.
- We now need to convert moles into a mass –

Mass = No. Moles x Mr Mr (NaOH) =
$$1x23 = 23$$

 $1x16 = 16$
Mass = 0.025×40
 $1x = 1$
 40 gMol^{-1}
Mass = $1g$

- Weigh this out in a beaker.
- Dissolve in distilled water and pour into the graduated flask.
- Add more distilled water to the beaker to wash the solute into the graduated flask.
- Repeat the last step several times to ensure all the solute is in the graduated flask.
- Fill the graduated flask with distilled water so the meniscus sits on the line.
- Stopper the flask and invert several times to ensure mixing.

Mass Concentrations:

- This is the mass in g dissolved in 1 dm³ of solution
- This means that the concentrations are measured in g dm⁻³ instead
- The concentration for the solution made above would be 1 g dm⁻³ as a mass concentration.

Concentrated vs diluted:

- This is down to the amount of solute dissolved in solution:
- Concentrated : Lots of solute per dm³
- Diluted: A small amount of solute per dm³

Questions 1-3 p17 / 9,10 p35 / 4 p36

Moles and reactions

- Mole calculations can now be used to calculate reacting amounts / product amounts.
- This is done by using the balanced chemical equation and moles calculations using masses, gas volumes and concentrations.
- **ALL** of these require the use of the mole:

Mass / mole calculations:

Example: 2.4g Magnesium reacts in air to form magnesium oxide. Calculate the mass of magnesium oxide made:

STEP1: Write a balanced chemical equation and add the amounts given and question mark what you are asked to work out:

$$2Mg_{(s)}$$
 + $O_{2(g)}$ \rightarrow $2MgO_{(s)}$
2.4g Mass?

STEP2: Check the state symbol of your starting mass to decide which moles equation you will use - (s) - means you use Moles = mass / Ar

STEP3: Use the reacting ratios to work out how many moles you have made (or need):

STEP4: Check the question/ state symbol to decide whether to convert it to mass / concentration / volume - (s) = mass

Gas / mole calculations:

Example: 2.3g sodium reacts with excess sulphuric acid to form sodium sulphate and hydrogen gas. Calculate the volume of hydrogen made:

STEP1: Write a balanced chemical equation and add the amounts given and question mark what you are asked to work out:

2Na_(s) +
$$H_2$$
SO_{4(aq)} \rightarrow Na₂SO_{4(aq)} + $H_{2(g)}$ 2.3g Volume = ?

STEP2: Check the state symbol of your starting mass to decide which moles equation you will use - (s) - means you use Moles = mass / Ar

STEP3: Use the reacting ratios to work out how many moles you have made (or need):

STEP4: Check the question/ state symbol to decide whether to convert it to mass / concentration / volume - (g) = volume

Concentration / mole calculations:

Example: 2.3g sodium reacts with 250cm³ sulphuric acid to form sodium sulphate and hydrogen gas. Calculate the concentration of sodium sulphate solution made:

STEP1: Write a balanced chemical equation and add the amounts given and question mark what you are asked to work out:

$$2Na_{(s)}$$
 + $H_2SO_{4(aq)}$ \rightarrow $Na_2SO_{4(aq)}$ + $H_{2(g)}$ 2.3g Concentration ?

STEP2: Check the state symbol of your starting mass to decide which moles equation you will use - (s) - means you use Moles = mass / Ar

STEP3: Use the reacting **ratios** to work out how many moles you have made (or need):

STEP4: Check the question/ state symbol to decide whether to convert it to mass / concentration / volume - (aq) = concentration or volume

Questions 1-3 p21 / 4 p36

Water of crystallisation

- Coloured crystals such as blue copper sulphate contain that colour due to water locked in the crystalline structure.
- If the water is driven off then the crystals appear white.
- This water locked in the crystal is called the water of crystallisation.

Hydrated - Crystals that contain water

Anhydrous - Crystals that do not contain water

 The water can be evaporated by heat. Some compounds will decompose so a moderate heat must be used:

- The waters in the crystal obviously have a mass and will affect the Mr of the crystal.
- The water must be written in the formula. This is done by following a dot after the crystal formula:

CuSO₄.H₂O

However most crystals will contain more than 1 mole of water per mole of crystal.

• For copper sulphate, 1 mole of copper sulphate crystals will contain 5 moles of water:

• The number of moles of water per mole of crystal depends upon that crystal:

CuSO₄.5H₂O CoCl₂.6H₂O Na₂SO₄.10H₂O

• The water of crystallisation can be calculated by **empirical formula** and by **moles** calculations:

From empirical formula

• Count the number of **hydrogen's and divide by 2**. Do not use oxygen as this may be in the crystal formula

 $MgCl_2H_{10}O_5 \rightarrow MgCl_2.5H_2O$ $Na_2CH_{20}O_{13} \rightarrow Na_2CO_3.10H_2O$ $CaN_2H_8O_{10} \rightarrow Ca(NO_3)_{2\cdot4}H_2O$

From mole calculations (example)

• From the experiment done earlier it is possible to calculate the masses of crystal and water.

Mass of hydrated MgSO₄.xH₂O = 4.312g Mass of anhydrous MgSO₄ = 2.107g

- From this we can calculate the masses of the crystal and water:
- Convert these to moles of crystal and water.
- Divide through by the smallest number of moles to get a whole number ratio:

	Crystal, MgSO ₄	Water, H₂O
Masses of each	2.107g	(4.312 - 2.107)
	2.107g	2.205g
Moles of each	2.107 / Mr	2.205 / Mr
	2.107 / 120.4	2.205 / 18
	0.0175	0.1225
Divide by the smallest	0.0175 / 0.0175	0.1225 / 0.0175
	1	7

So the formula of hydrated $MgSO_4.xH_2O = MgSO_4.7H_2O$ Now calculate the Formula from the practical you completed earlier.

Questions 1-2 p27 / 15 p35

<u>Titrations - Volumetric analysis</u>

• This technique can be used to find:

Concentration

Mr

Formula

Water of crystalisation

- To do this you react a certain volume of a solution with an unknown concentration with a solution of known concentration.
- Using moles and reacting ratios, you can calculate the concentration of this solution. This is known as titration.
- The only requirement is that you can tell when one solution has completely reacted with the other.
- Between acids and alkalis, we use indicators to let us know when the resulting solution is neutral.
- An indicator will change colour at the 'end point' (neutral).
- Common indicators are:

Indicator	Acidic colour	Base colour	End point colour
Methyl orange	Red	Yellow	Orange
Bromothymol Blue	Yellow	Blue	Green
Phenylphthalein	colourless	Pink	Pale pink

Technique/procedure

- Rinse the burette with distilled water then acid.
- Fill the burette to the graduation mark ensuring the air bubble is removed from the tap.
- Rinse a pipette with alkali, fill and transfer a known volume to a clean, dry conical flask.
- Add some indicator.
- Run the acid into the alkali and stop when the colour changes. This is your 'range finder'.
- Wash the conical flask with pure water.
- Repeat the previous steps but stop a few cm³ before the colour change.
- Add drop wise until the first drop changes the colour of the indicator.
- Repeat until you get 2 results that agree within 0.10cm³.
- Record results in a table like the one below:

	Range finder /	Run 1/	Run 2/
	titration / cm3	cm3	cm3
2 nd			
burette			
reading			
1 st			
burette			
reading			
Volume			
added			

Calculation - example

25cm³ of 0.01M sulphuric acid was added to exactly neutralize 50cm³ of sodium hydroxide. Calculate the concentration of the sulphuric acid:

1 Write a balanced equation

$$2NaOH_{(aq)} + H_2SO_{4(aq)} \rightarrow Na_2SO_{4(aq)} + 2H_2O_{(l)}$$

2 Calculate the number of moles of acid added from the burette

No. of moles = Concentration (Mol dm
3
) x Volume (cm 3) (H $_2$ SO $_4$)

No. of moles = 0.01 Mol
$$dm^3 \times 25 cm^3 (H_2SO_4) 1000$$

No. of moles =
$$25 \times 10^{-3}$$
 Moles (H₂SO₄)

3 Use the ratio to work out the number of moles in the sample of alkali

2x the number of moles for H₂SO₄

No. of moles =
$$25 \times 10^{-3} \times 2$$
 (NaOH)

No. of moles =
$$50 \times 10^{-3}$$
 Mol (NaOH)

4 Calculate the concentration. (Convert to g dm³ if necessary)

Concentration (Mol dm
3
) = No Moles
Volume (dm 3)

Concentration (Mol dm³) =
$$\frac{50 \times 10^{-3}}{0.05 \text{ (dm}^3)}$$

Concentration (Mol dm³) = 1 Mol dm⁻³

5 Convert to g dm³ if required (usually for solubility)

Mass = No. moles
$$x Mr (NaOH)$$

$$Mass = 1 \times 40$$

Concentration = 40 g dm⁻³

Questions 1-2 p29 / 17 p35

Questions 1-2 p33 / Remaining questions p35 - 37