3C Group 7

Group 7 elements: Redox reactions:

• These are F, Cl, Br, I and At

Physical properties:

- The melting and boiling point of the halogens increases with atomic number due to increased van der Waals.
- This can be seen by their physical states at room temperature.

· Iodine sublimes to a purple vapour.

Electronic configuration:

F:	2s ² 2p ⁵
CI:	3s ² 3p ⁵
Br:	4s ² 4p ⁵
I:	5s ² 5p ⁵
At:	6s ² 6p ⁵

- Each Group 7 element has 7 electrons in the outer shell.
- Each have s² p⁵ configuration, and known are p block elements.
- The require 1 electron to complete their outer shell

Halogens as oxidising agents:

 $1/2Cl_{2(g)}$ + $e^ \rightarrow$ $Cl_{(g)}^-$

- These elements gain 1 electron when they react.
- This means that what ever they react with must lose electrons.
- Losing electrons is an oxidation reaction:

Oxidation

Is

Loss of electrons

Reduction

ls

Gain of electrons

- As the Group 7 elements cause the oxidation of other compounds or elements we say it is a good Oxidising agent.
- Reactivity decreases as you go down the Group. This means they gain their electrons less readily.
- This means as you go down Group 7, their oxidising power decreases.

Explanation:

- There are more electron shells which increases shielding between nucleus and outer electron shell.
- As there are more electron shells, the distance between nucleus and outer shell increases.
- This means that attraction between the nucleus and outer electrons decreases.
- This means that the incoming electron is not captured as easily:

Redox reactions of the halogens:

- Redox reactions can show how the Halogens ability to form ions reduces as you go down the Group (ie its reactivity)
- By competing the Halogens (Cl₂, Br₂, and I₂) with the Halides (Cl⁻, Br⁻, and I⁻)
- Each Halogen is mixed with the Halides.
- The more reactive Halogen will oxidise and displace the Halide of a less reactive Halogen.
- Halogens are coloured in solution, this can indicate whether a redox reaction has occurred:

Interpretation:

- Reactivity decreases as you go down group 7.
- It becomes harder to capture an electron with increased distance and shielding. le the opposite of group 2 elements.
- · The reactions are:-

• Reactions 1 – 3 involve a transfer of an electron from the halide to the halogen.

$$Cl_{2(aq)}$$
 + $2Br_{(aq)}$ \rightarrow $2Cl_{(aq)}$ + $Br_{2(aq)}$

Element	Cl	_	2Br-	201.		Br	Change i	Redox	
Liciliciit	CI _{2(aq)}	Т	2Br _(aq)	2CI _(aq)	Т	Br _{2(aq)}	Up	Down	Neuox
CI	0			-1				1	Red
Br			-1			0	1		Ох

- The reduction of $Cl_{2(aq)}$ oxidises $Br_{(aq)} \rightarrow Cl_{2(aq)}$ is an Oxidising agent
- In each reaction the halogen is an oxidising agent and the halide is a reducing agent.
- As chlorine is the most reactive it is the strongest oxidising agent.

Disproportionation

This is a reaction when the same element has been both oxidised and reduced

Disproportionation of chlorine in water (Bleach):

$$CI_{2(aq)} + 2H_2O_{(I)} \rightarrow HCI_{(aq)} + HCIO_{(aq)}$$

Elomont	CL		2∐ ∩	_	⊔CI		HCIO _(aq)	Chan	Redox	
Element	CI _{2(aq)}	_	2H ₂ O _(I)		HCI _(aq)	+		Up	Down	Redox
CI	0				-1				1	Red
CI	0						+1	1		Ох

In this reaction, the CI has been oxidised and reduced

Disproportionation of chlorine in aq sodium hydroxide:

$$CI_{2(aq)}$$
 + $2NaOH_{(aq)}$ \rightarrow $NaCI_{(aq)}$ + $NaCIO_{(aq)}$ + $H_2O_{(I)}$

Element	Cl.,		2NaOH _(aq)	_	NaCl.		NaClO _(aq) +		H ₂ O _(I)	Change	Redox	
Liciliciit	C12(aq)	Τ	ZINAOI I(aq)		INACI(aq)	T		T		Up	Down	Redux
CI	0				-1						1	Red
CI	0						+1			1		Ох

• The CI has been oxidised and reduced in this reaction too.

Group 7 elements: Uses and halide tests

Properties of Group 7 elements and compounds:

- Because of Periodicity we only have to learn the Chemistry for one of the elements in Group 7.
- They all form diatomic covalent molecules, X will be used to represent any halogen.
- All the elements in Group 7 will react in the same way (but with different vigour).
- **Group 7 elements** form have **Van Der Waals forces of attraction** increasing down the Group more electrons
- As you go down Group 7: the elements become less reactive.
- As you go down Group 7: the elements become a weaker oxidising agent.
- Group 7 elements form ionic halides with metals.

Fluorine:

- Is the most reactive element on the Periodic Table.
- It burns virtually anything in its path.
- Many Chemists have been killed in the explosion when using fluorine.

Halides:

• Usually have a 1- charge, X1-

Halide compound(s)	Use
NaCl	Table salt
NaF / SnF ₂	Toothpaste
CaF ₂ (Fluorite / fluorspar)	Used to make lenses to focus IR light

Testing for Halide ions:

- A simple test tube test can be done to identify halide ions in compounds.
- Dissolve a small amount of compound in water
- Add silver nitrate, AgNO₃.
- The silver ions, Ag⁺ combines with the Halide ions, X⁻ to form a silver halide precipitate
- The silver halide precipitates are coloured depending upon the halide present.
- Sometimes it is difficult to judge the exact colour.
- Ammonia can be added as the different silver halides as they have different solubility's in ammonia

Interpretation:

Chloride:
$$Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \rightarrow AgCl_{(s)}$$
 White Soluble in precipitate dilute NH₃

Bromide:
$$Ag^{+}_{(aq)} + Br^{-}_{(aq)} \rightarrow AgBr_{(s)}$$
 Cream Soluble in precipitate conc NH₃

$$\begin{array}{lll} \text{lodide:} & \text{Ag}^+_{(\text{aq})} + \text{I}^-_{(\text{aq})} & \rightarrow & \text{AgI}_{(\text{s})} & \begin{array}{ll} \text{Yellow} & \text{Insoluble} \\ \text{precipitate} & \text{in conc} \\ \text{NH}_3 \end{array}$$

• The solubility of the precipitates decreases down the group.