2B Analysis

Percentage yield:

Is the measure of conversion of reactants to products. It is a measure of the waste of the reactants

- When we think about reactions, we always think of them as going 100% to products.
- This is usually **not** the case due to:

1 Equilibria: The reaction may not go to completion.

2 Side reactions: This will produce 'by - products' reducing the amount

of desirable product.

3 Reactant purity: The reactants may be impure meaning you have

started with less than you thought you did.

4 Transfers: Every time you move your reactants / products from

one place to another, you will leave some behind.

Separation / purification: This inevitable results n the loss of product.

• Percentage yield is like a score in a test. It is an indication of what you achieved out of what you could have got:

The rules:

- 1 Write a balanced chemical equation
- 2 Identify the limiting reactant
- 3 Calculate the theoretical amount of moles of product starting from the

Ilmiting reactant

- 4 Calculate the actual amount of moles of product obtained
- 5 Calculate % yield using the formula

Examples:

A) Preparation of ethanoic acid:

A student reacted 9.20g of ethanol with and excess of sulphuric acid and sodium dichromate (the oxidising agent). The student obtained 4.35g of ethanoic acid. Calculate the % yield:

1) Write a balanced chemical equation:

 CH_3CH_2OH + 2[O] \rightarrow CH_3COOH + H_2O

2) Identify the limiting reactant

- You are told in the question that you have an excess of sulphuric acid and sodium dichromate.
- This means that the limiting reactant is ethanol.

3) Calculate the theoretical amount of moles of product starting from the limiting reactant:

• Calculate the amount of moles of ethanoic acid you could have made:

4) Calculate the actual amount of moles of product obtained:

• Calculate the number of moles you actually made:

5) Calculate % yield using the formula:

B) Preparation of propyl methanoate

A student prepared propyl methanoate from propan - 1 - ol and methanoic acid.

The students reacted 3.00g of propan - 1 - ol witth 2.50g of methanoic acid in the presence of a sulphuric acid catalyst. He was disappointed to obtain only 1.75g of propyl methanoate. Calculate the % yield of propyl methanoate:

1) Write a balanced chemical equation:

2) Identify the limiting reactant

 You are given 2 starting amounts which means you have to work out which one is the limiting reactant:

Propan - 1 - ol is the limiting reactant so the theoretical calculation must be made using this

3) Calculate the theoretical amount of moles of product starting from the limiting reactant:

• Calculate the amount of moles of ethanoic acid you could have made:

$$CH_{3}CH_{2}CH_{2}OH + HCOOH \rightarrow HCOOCH_{2}CH_{2}CH_{3} + H_{2}O$$

$$3.00g$$

$$\downarrow$$

$$Moles = \frac{mass}{Mr}$$

$$Moles = \frac{3.00}{60.0}$$

$$1:1$$

$$Moles = 0.0500$$

$$\uparrow$$

$$Theoretical$$

$$Moles = 0.0500$$

4) Calculate the actual amount of moles of product obtained:

• Calculate the number of moles you actually made:

5) Calculate % yield using the formula:

Questions P163 1-2

Atom economy:

Is the measure of the waste associated with the products

- % yield tells us how much of our product is made from our starting materials but it doesn't take into account any undesirable or side products.
- Atom economy takes into account any wasteful by products too
- By products are considered wasteful as they are usually disposed of. This is costly and can cause environmental problems.
- A more efficient way of dealing with by products would be to sell them on to companies that would make use of them.

Calculating atom economy:

A) Bromination of propene:

 Any reaction that gives only one product is very atom economic, addition reactions for example.

B) Preparation of butan - 1 - ol:

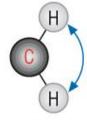
Atom economy = Mr of the desired product
Sum of Mr's of all products

= 74.0
176.9
x 100
= 41.8%

This means that most of the starting materials ended up as waste.

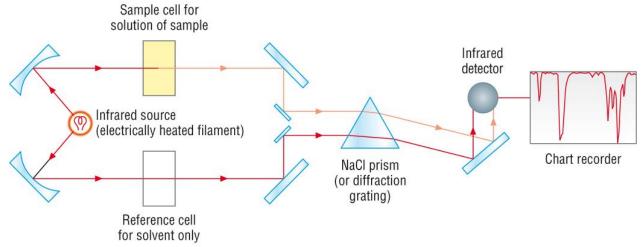
Atom economy and type of reaction:

- Reactions having only one product have a high atom economy. The type of reactions giving only one product are addition reactions.
- Reactions giving more than one product have a low atom economy. The type of reactions giving more than one product are **substitution / elimination reactions**.
- To improve the atom economy for substitution / elimination reactions, a use for the undesired product should be found.
- If the undesired product is toxic, we have even bigger problems -disposal.


Questions P165 1-2

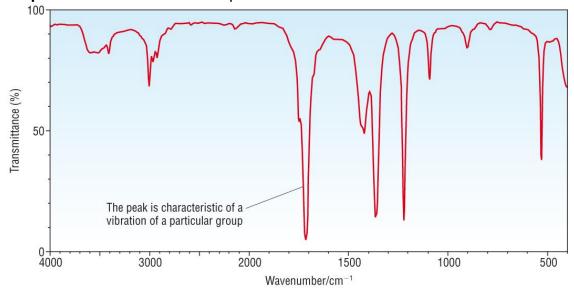
Infrared spectroscopy Infrared radiation and molecules:

- All molecules absorb IR light.
- The IR light makes the bonds in a molecule vibrate (like the engine of a bus making the windows vibrate).
- Vibrations occur in one of 2 ways, a stretching vibration or a bending vibration:


The C–H bond stretches when it absorbs infrared radiation.

The C–H bond bends when it absorbs infrared radiation.

- Every bond vibrates at its own unique frequency depending on:
- 1) Bond strength
- 2) Bond length
- 3) Mass of atom at either end of the bond


How it works:

- The full IR spectrum is passed through a sample.
- The frequencies are called wavenumbers 300 4000cm⁻¹
- Some frequencies make some of the bonds in a molecule vibrate
- When these bonds vibrate they absorb energy from the IR light source.
- This means less IR light gets through the sample to the detector.
- Each absorbance peak is characteristic of a particular bond / atoms vibrating.
- A trace which we call a spectrum is produced.

What does the spectrum look like:

- The spectrum gives us 'peaks' which are actually absorbance troughs.
- These troughs are caused by a frequency of IR light being absorbed from a bond vibrating bond.
- Each 'peak' is characteristic to a specific bond / atoms

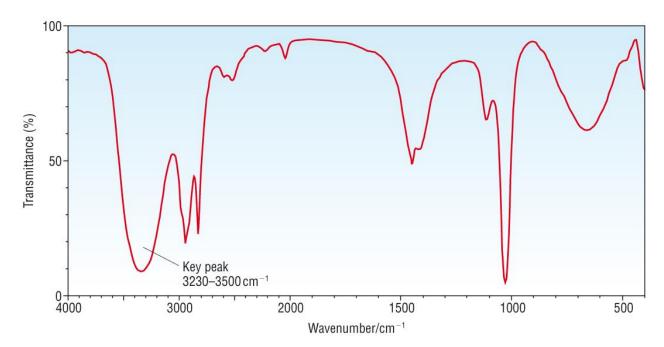
Applications of IR spectroscopy:

- It is used widely in forensic science analysing:
 - Paint fragments in hit and run offences
 - Monitor unsaturation in polymerisation
 - Drug analysis P167
 - Perfume quality control

Questions P167 1-3

Infrared spectroscopy: Functional groups

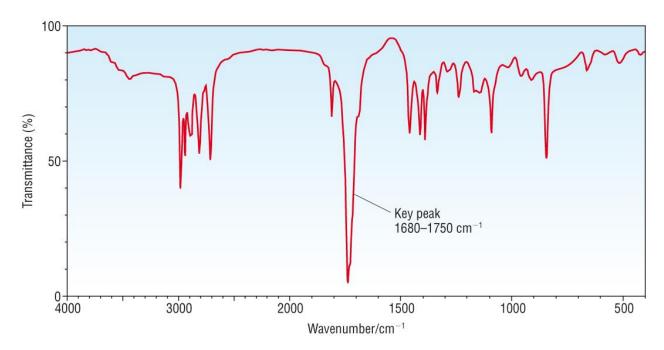
Identification of functional groups:


- We have just seen that the peak on an IR spectra are due to specific bonds (and atoms) vibrating or stretching.
- The frequency at which you find an absorbance peak is therefore unique to bonds and atoms at each end of the bond.
- This means that functional groups will give specific peaks.
- The groups you need to know are:

Bond	Functional group	Wavenumber
C=O	Aldehydes, ketones, carboxylic acids	1640 - 1750
C- H	Organic conpounds	2850 - 3100
0- Н	IL STOOMULE SEIDE	2500 - 3300 (very broad)
0- H	Alcohols (hydrogen bonded)	3200 - 3550 (broad)

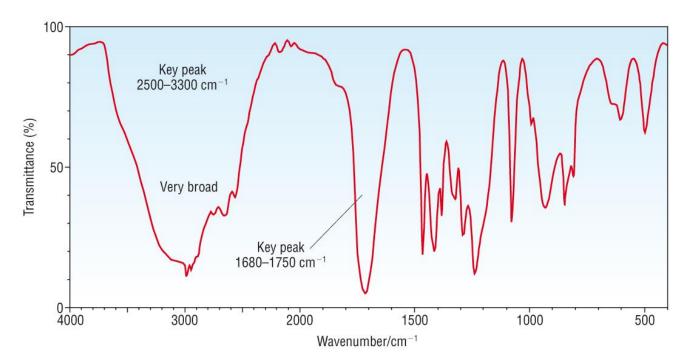
• Do not get the peaks for C - H bonds confused with O - H bonds.

Alcohols:


• The IR spectrum for methanol, CH₃OH is shown below:

The peak at 3230 - 3500 represents an O - H group in alcohols.

Aldehydes and ketones:


• The IR spectrum for propanal, CH₃CHO is shown below:

• The peak at 1680 - 1750 represents a C=O group in aldehydes and ketones.

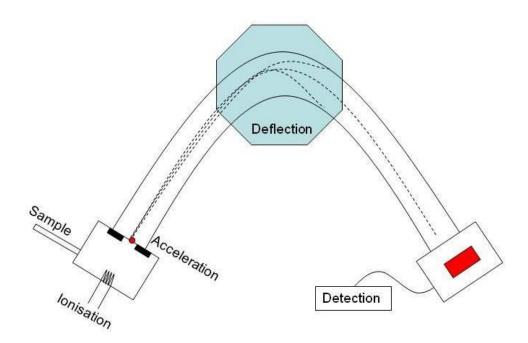
Aldehydes and ketones:

• The IR spectrum for propanoic acid, CH₃CH₂COOH is shown below:

- The peak at 2500 3300 represents an O H group in a carboxylic acid.
- The peak at 1680 1750 represents a C=O group in a carboxylic acid.

Questions P169 1-2

Mass Spectrometry


Uses of mass spectroscopy:

- First developed by JJ Thompson at the start of the 20th Century.
- It is used:
- To identify unknown compounds.
- To determine the abundance of isotopes
- To gain further information about the structure and chemical properties of molecules.

Examples:

- To examine patients breath while under anaesthetic.
- Detecting banned substances steroids in athletes.
- Detecting traces of toxic chemicals in contaminated marine life

How a mass spectrometer works:

Deflection

- The sample is vaporised then ionised = mass / charge.
- **Ionisation** is done by electron impact, chemical ionisation, electrospray or lasers.
- Electroplates repel and accelerate the ion into the chamber.
- A strong magnetic field deflects the beam of ions.
- This is used to determine mass / charge.
- The ion with a large mass is **deflected less** and hits the outer edge.
- The ion with a small mass is **deflected most** hits the inside edge.
- Only if the ion has the correct mass / charge ratio will it reach the detector.
- The magnetic field strength can be varied to get a range of mass / charge readings.

Time of flight

- The sample is vaporised then ionised = mass / charge.
- lonisation is done by electron impact, chemical ionisation, electrospray or lasers.
- Electroplates repel and accelerate the ion into the chamber.
- A short time of flight = small mass / charge
- A long time of flight = large mass / charge
- The time taken to reach the detector determine the mass / charge of the ion.

Mass spectra of elements:

- One of the most important uses is to determine the isotopes present in a natural sample of an element
- A mass spectrum shows the mass charge (the Ar) and the abundance as a %.
- This information can be used to determine the relative atomic mass:

From mass spectra 90.9 8.9 0.2 20 21 22 m/e

From table of data

RAM of silicon isotopes	% Abundance
28	92.2
29	4.7
30	3.1

Use the formula:-

RAM =
$$\frac{(\% \times \text{Ar}) + (\% \times \text{Ar}) +}{100}$$
etc
100
RAM = $\frac{(90.9 \times 20) + (0.2 \times 21) + (8.9 \times 22)}{100}$
RAM = 20.8

Use the formula:-

RAM =
$$\frac{(\% \times \text{Ar}) + (\% \times \text{Ar}) +}{100}$$
etc
100
RAM = $\frac{(92.2 \times 28) + (4.7 \times 29) + (3.1 \times 30)}{100}$
RAM = 28.1

Questions 1-2 P171

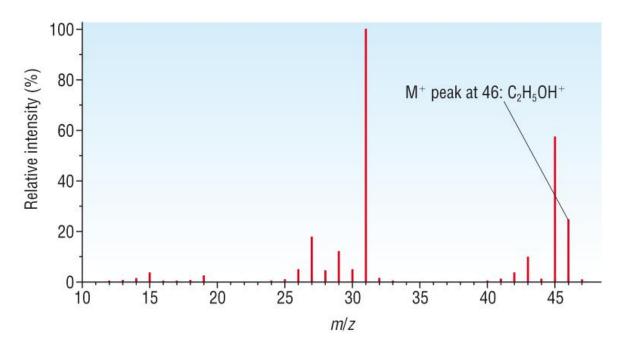
Mass spectrometry in organic chemistry

Mass spectrometry and molecules:

- Ionisation in a mass spectroscope is usually done by electron bombardment.
- Electron bombardment knocks another electron out of the molecule producing a positive molecular ion:

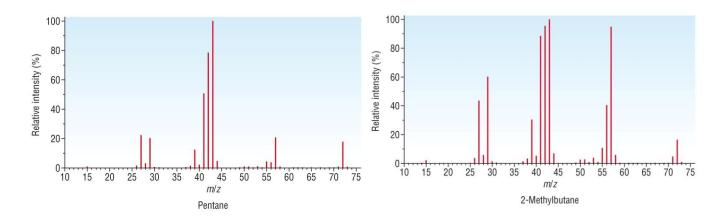
$$C_2H_5OH$$
 + $e^- \rightarrow C_2H_5OH^+$ + $2e^-$

- This is called the molecular ion, M⁺.
- The mass of the electron lost electron is negligible.
- The molecular ion has the same mass as the Mr of the molecule.
- As we have a mass and a charge we can use a mass spectrometer to determine the Mr (m/z).


Fragmentation:

- Excess energy from the ionisation process causes bonds in the organic molecule to vibrate and weaken.
- This causes the molecule to split or fragment into smaller pieces.
- Fragmentation gives a positively charged molecular fragment ion and a neutral molecule:

$$C_2H_5OH^+ \rightarrow CH_3 + CH_2OH^+$$


- The fragment ion, CH₂OH⁺ has a mass and charge so we can use a mass spectrometer to determine the Mr (m/z) of that fragment.
- Fragment ions can be broken up further to give a range of m/z values.

- The m/z values correspond to the Mr's of the molecule and its fragments.
- The Mr of the molecule is always the highest m/z value ie this molecule has not been fragmented so it must have the highest Mr.
- The one below is for ethanol. It has a m/z of 46 which is also its Mr.

Fragmentation patterns:

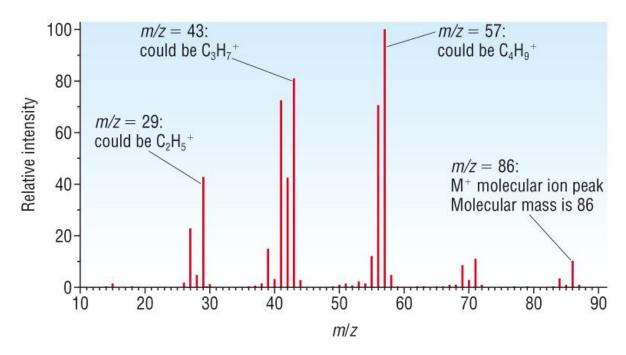
- Mass spectroscopy is used to identify and determine the structures of unknown compounds.
- Although 2 isomers will have exactly the same **M**⁺ peak, the fragmentation patterns will be unique to that molecule, like a fingerprint.
- In practice mass spectrometers are linked to a database and the spectra is compared until an exact match is found:

- These are the mass spectra for pentane and a structural isomer of pentane, 2 methyl butane.
- The M⁺ peak is the same for each but the fragmentation patterns are different.

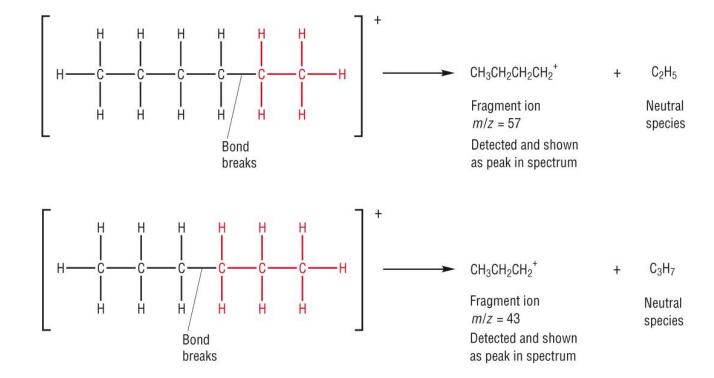
Questions 1-2 P173

Mass spectrometry: Fragmentation patterns

Identifying fragment ions:


- When you look at a mass spectrum, other peaks seem to look more important than the M⁺ peak.
- These fragment peaks give clues to the structure of the compound.
- Even simple structures give common peaks that can be identified:

m/z value	Possible identity of the fragment ion
15	CH ₃ ⁺
29	C ₂ H ₅ ⁺
43	C ₃ H ₇ ⁺
57	C₄H ₉ ⁺
17	OH ⁺


- Functional groups are a good place to start, OH = m/z of 17
- Some fragments are more difficult to identify as these will have undergone molecular rearrangement.

Identification of organic structures:

- A mass spectrum will not only tell you the Mr (from the M⁺ peak), but it can also tell you some of the structural detail.
- These peaks have been labelled with a letter:

- The mass spectrum above has been produced from hexane.
- The following reactions show how the molecule could fragment to form the fragment ions 57 and 43:

Questions 1-2 P175 / 14 P179 / 3 P181