3A Energy

What is chemical energy?

- Chemical energy is a form of potential energy which is stored in chemical bonds.
- Chemical bonds are the attractive forces that bind atoms together.
- As a reaction takes place, bonds break in the reactants and new bonds are formed in the products.
- The difference in energies of the bonds between the atoms of reactants and products is called chemical energy.

Enthalpy, H

- Enthalpy, H, is the heat content that is stored in a chemical system, as reactants or products.
- It is impossible to measure the enthalpy content of a system directly but we can measure the differences in enthalpy contents.
- The difference in enthalpy contents is the energy either given out or absorbed.

- The energy exchanged with the **surroundings** can be given out as light, sound, electrical but is more usually heat.
- This change in enthalpy content is called enthalpy change.

Conservation of energy (First Law of thermodynamics)

Energy cannot be created or destroyed just transferred between the system and the surroundings

- The surroundings, water, tube, air either gains the energy given out by the system (hot)
- Or the surroundings, water, tube, air loses energy to the system (cold) like ethanol evaporating from your hand
- This means that:

Heat loss in a chemical system
Heat gain in a chemical system

= Heat gain to the surroundings
= Heat loss to the surroundings

Temperature increases
Temperature decreases

• What your thermometer is measuring is the **surroundings**. That is - the water, tube, air the energy is transferred from / to.

Enthalpy change, ΔH :

• This is the difference between the enthalpy contents of the products and the reactants (at constant pressure):

$\Delta H = H_{products} - H_{reactants}$

- It is rare for enthalpy contents of products and reactants to be exactly equal.
- This means that there is almost always a transfer of energy between the system and the surroundings.

Exothermic reactions:

- This means that the enthalpy content of the **products** is **smaller** than the **reactants**.
- The excess energy is transferred from the system to the surroundings hot

H_{products} < H_{reactants}

Endothermic reactions:

- This means that the enthalpy content of the **products** is **greater** than the **reactants**.
- The excess energy is transferred to <u>system</u> from the surroundings cold

H_{products} > H_{reactants}

Questions 1 - 2 P 185

Exothermic and endothermic reactions

1) Oxidation of fuels:

• The most common example is the oxidation of methane forming carbon dioxide and water:

$$CH_{4(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)} \Delta H = \frac{1}{890} Kj mol^{-1}$$

- The negative sign means that the reaction is exothermic.
- This means that H_{products} < H_{reactants}
- The units tell you that **890 Kj** of energy is given out per **mole** of methane.
- Changes in enthalpy are given in molar quantities:

Environmental impact - Example:

- A small car travelling 2 miles uses 200 250g of petrol, C₈H₁₈, ΔH = -5470 KJ mol⁻¹.
- How much energy is needed and how much CO₂ is produced?

$$C_8H_{18(l)} + 12.5O_{2(g)} \rightarrow 8CO_{2(g)} + 9H_2O_{(g)} \Delta H = \frac{-K_j}{5470 \text{ mol}^{-1}}$$

$$200g$$

$$Moles = m / Mr$$

$$Moles = 200 / 114$$

$$Moles = 1.75$$

$$Moles \sim 2$$

$$\Rightarrow Moles = 16$$

$$Energy used = 2 \times 5470$$

$$Volume = 384 dm^3$$

2) Respiration:

• An important exothermic reaction providing energy for all living things:

$$C_6H_{12}O_{6(aq)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(I)} \Delta H = -2801 \text{ Kj mol}^{-1}$$

Endothermic reactions:

1) Photosynthesis:

- An important endothermic reaction without which there would be no life.
- This reaction makes 'food', the starting point for all foods, and oxygen for respiration.
- Energy from the sun provides the energy to transfer from surroundings to system.

$$6CO_{2(g)} + 6H_2O_{(l)} \rightarrow C_6H_{12}O_{6(aq)} + 6O_{2(g)} \Delta H = +2801 \text{ Kj mol}^{-1}$$

• The reverse reaction of respiration.

2) Thermal decomposition of limestone:

• Limestone contains calcium carbonate:

$$CaCO_{3(s)}$$
 \rightarrow $CaCO_{(s)}$ + $CO_{2(q)}$ $\Delta H = +178 \text{ Kj mol}^{-1}$

- Calcium oxide is commonly known as lime used in cement and used to treat soils by farmers.
- If water is added to lime, calcium oxide, heat is given off exothermic reaction.

Questions 1 - 2 P187

Enthalpy profile diagrams

Simple enthalpy profile diagrams:

• Reactions and their enthalpy changes have been shown as simple **enthalpy profile diagrams**:

Exothermic reactions:

Where H_{products} < H_{reactants}

 $\Delta H = negative$

Endothermic reactions:

Where H_{reactants} > H_{products}

 $\Delta H = positive$

Activation energy:

- The simple energy profile diagrams assumes that as soon as the reactants come in contact with each other a reaction takes place.
- Most reactions do not occur 'spontaneously' but need a little bit of energy to get them going, a spark is needed to set gas alight.
- This 'bit of energy' is called the activation energy. It is the energy required to break the bonds in the reactants.

Exothermic reactions:

- Even though the products are lower in energy than the reactants, a small amount of energy is needed to break the reactant bonds, the activation energy.
- We say the reaction has to overcome the energy barrier.
- After that, the exothermic nature of the reaction is enough to break more reactant bonds.
- A way of thinking of this is like a cyclist riding a bike up a small hill to gain a large amount of 'free wheeling' or energy.

Endothermic reactions:

- The products are higher in energy than the reactants, a small amount of energy is still needed to break the reactant bonds, the activation energy.
- The reaction has to overcome the energy barrier.
- This time there is no excess energy to break more reactant bonds, a sustained amount of energy needs to be continually supplied to keep the reaction going.
- This time the cyclist rides a bike up a large hill to gain a small amount of 'free wheeling' or energy.

Questions 1-2 P189

Standard enthalpy changes

Standards:

- Enthalpy changes for reactions will vary slightly depending upon the conditions under which the reaction is carried out.
- All data books have to have the same value for enthalpy changes.
- Chemists use **standard conditions** to ensure that all reactions and corresponding enthalpy changes are carried out under the same conditions.
- They are as close to normal lab conditions as possible.

Standard conditions:

Pressure at 100 kPa (which is 1 atmosphere)

Temperature at 298K (25°C)

1 Mole or 1 Molar solutions

Normal physical states at standard temperature and pressure (above conditions)

A standard enthalpy change is shown by - ΔH^{θ}

- H Enthalpy
- **∆** Change in

 θ symbol represents standard conditions

Standard states:

 Standard enthalpy changes must have substances in their standard states under these standard conditions:

Substance	Chemical symbol and state	Explanation
Magnesium	$Mg_{(s)}$	Magnesium is a solid under standard conditions, (s)
Hydrogen	$H_{2(g)}$	Hydrogen is a gas under standard conditions, (g)
Water	$H_2O_{(1)}$	Water is a liquid under standard conditions, (I)

Standard enthalpy changes:

• There are 3 standard enthalpy changes that you need to know:

1) Standard enthalpy change of reaction, ΔH_r^{θ}

- For this enthalpy change we need a reaction to refer to.
- A value for the enthalpy change which is true for the molar quantities stated in the reaction:

$$H_{2(q)} + 1/2 O_{2(q)} \rightarrow H_2O_{(l)} \Delta H_r^{\theta} = -286 \text{ KJMol}^{-1}$$

For the reaction:

$$Fe_2O_{3(s)} + 2AI_{(s)} \rightarrow 2Fe_{(s)} + AI_2O_{3(s)}\Delta H^{\theta}_r = -851.50 \text{ KJ Mol}^{-1}$$

• For the same reaction with different stoichiometry:

$$1/2\text{Fe}_2\text{O}_{3(s)} + \text{Al}_{(s)} \rightarrow \text{Fe}_{(s)} + 1/2\text{Al}_2\text{O}_{3(s)} \Delta \mathbf{H}^{\theta}_{\mathbf{r}} = -425.75 \text{ KJ Mol}^{-1}$$

• Note that the reaction must be written in order for the information to be correct. ΔH^{θ}_{r} is half the value if the reaction is balanced using halves.

2) Standard enthalpy of combustion – ΔH_c^{θ}

 Combustion reactions are so common that they have a standard enthalpy change of their own:

Definition: The enthalpy change that occurs when 1 mole of a substance reacts completely with oxygen under standard conditions. All reactants and products are in their standard states.

ΔH_c^{θ} for ethane:

$$C_2H_{6(g)}$$
 + 3.5 $O_{2(g)}$ \Rightarrow $3H_2O_{(I)}$ + $2CO_{2(g)}$ $\Delta H_c^{\ \theta}$ = -1560 KJMoI⁻¹

- ΔH_c^{θ} refers to the complete combustion of **1 mole** of ethane.
- This conforms with the definition -' when 1 mole of a substance reacts completely with oxygen'

3) Standard enthalpy change of formation, ΔH_{f}^{θ}

 Formation reactions are also so common that they have a standard enthalpy change of their own:

Is the enthalpy change that takes place when 1 mole of a compound is formed from its constituent elements in their standard states under the standard conditions.

ΔH^{θ}_{f} for water:

 $H_{2(g)}$ + 1/2O_{2(g)} \rightarrow $H_2O_{(l)}\Delta H^{\theta}_{f}$ = -286 KJ Mol⁻¹

- This refers to the **Standard enthalpy change of formation** of **1 mole of** water.
- This conforms with the definition -' when 1 mole of a compound is formed from its elements'

A problem:

• If we are forming an element H₂, there is no chemical change.

Heat gain to the

 We say that elements in their standard states under standard conditions have a standard enthalpy of 0 KJ Mol⁻¹

Questions 1 - 3 P191

Determination of enthalpy changes

- Enthalpy content of reactants and products cannot be measured directly.
- You can measure the enthalpy change between the reactants and products enthalpy change for a reaction, ΔH_r

Temperature

Remember:

Heat loss in a

The enthalpy change for any reaction, ΔH_r is measured in KJ Mol⁻¹, which is energy per mole

- This means we need to know 2 things
 - i) The energy change for which we use temperature change
 - ii) The amounts in moles of the limiting reagent that reacts

i) The energy change:

To determine the energy change we use the formula:

$$Q = \frac{mc\Delta T}{1000}$$

Q – quantity of energy exchanged J, the 1000 converts J to kJ

m – mass of the water g (ie cm³ as the density if water is 1 gcm⁻³)

c – specific heat capacity j g⁻¹ K⁻¹

 ΔT – rise in temperature K, (T_{initial} - T_{final})

- Convert the energy calculated into KJ (divide by 1000).
- ii) Calculate the number of moles used:

No Moles =
$$\frac{\text{Mass}}{\text{Mr}}$$
 or c x V

iii) Calculate the amount of energy exchanged per mole , this is the enthalpy: Enthalpy = <u>Energy</u>Moles

Check you have the sign correct:

(-)ve for exothermic reactions

(+)ve for endothermic reactions

Direct determination of enthalpy changes:

The particles are dissolved in the solution. The heat is exchanged from the particles into the solution. The heat exchange is measured using the thermometer.

- Most reactions involve adding one reactant to another and measuring the temperature rise.
- This is called direct determination and is carried out in a calorimeter.
- A calorimeter is an insulated reaction vessel which minimises heat exchange to the air as the surroundings we measure is the water / solvent.
- The simplest calorimeter is a polystyrene cup but they can get quite complex.

Example:

Excess Mg is added to 100cm³ of 2.00 Mol dm⁻³ CuSO₄, the temperature rose from 20.0°C to 65°C.

i) The energy change:

```
Q =
         (m
                                    ΔT) / 1000
                  X
                       C
                             X
        (100
                                    45) / 1000
Q =
                  X
                      4.18
                            X
                     Temp rises, it is exothermic therefore is
Q = 18.810 \, kJ
                                    negative
Q = -18.81 \text{ kJ}
```

ii) Calculate the number of moles used:

```
No Moles = c x V
No Moles = 2 x 0.100
No Moles = 0.2
```

iii) Calculate the amount of energy exchanged per mole, this is the enthalpy:

Finally write the equation with the enthalpy change:

$$\text{Mg}_{(s)} \ + \ \text{CuSO}_{4(aq)} \ \rightarrow \ \text{MgSO}_{4(aq)} \quad + \ \text{Cu}_{(s)} \ \Delta H_r^{\ \theta} \ = \text{-} \ 94.05 \ \text{KjMol}^{\text{-}1}$$

Questions 1 - 2 P193

Enthalpy change of combustion

• This is any reaction involving oxygen forming oxides:

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(l)} \Delta H_c^{\theta} = -890 \text{ KjMol}^{-1}$$

 $H_{2(g)} + 1/2O_{2(g)} \rightarrow H_2O_{(g)}$ $\Delta H_c^{\theta} = -286 \text{ KjMol}^{-1}$
 $AI_{(s)} + 3/4O_{2(g)} \rightarrow 1/2 \text{ AI}_2O_{3(s)}$ $\Delta H_c^{\theta} = -1676 \text{ KjMol}^{-1}$

Experimental determination of ΔH_c

- The enthalpy change of combustion, ΔH_c is also measured in KJ Mol⁻¹, which is energy per mole
- This means we need to know 2 things
 - i) The energy change for which we use temperature change when heating water
 - ii) The amounts in moles of fuel used

- To calculate ΔH_{c} , measure a known mass (volume) of water for $\mathbf{Q} = (\mathbf{m} \mathbf{C} \Delta \mathbf{T}) / 1000$.
- Take the initial temperature of the water.
- Weigh the burner before heating.
- Heat to raise the temperature by about 10°C.
- Take a final temperature.
- Reweigh the burner to get a mass of fuel used.

Example:

1.5g of propan-1-ol heated 250cm³ of water by 45°C.

i) The energy change:

Q = $(m \times c \times \Delta T) / 1000$ Q = $(250 \times 4.18 \times 45) / 1000$ Q = 47.025 kJ Temp rises, it is exothermic therefore is negative

Q = -47.025 kJ

ii) Calculate the number of moles used:

No Moles = Mass Mr No Moles = 1.5 60 No Moles = 0.025

iii) Calculate the amount of energy exchanged per mole, this is the enthalpy:

Enthalpy = $\frac{\text{Energy}}{\text{Moles}}$ Enthalpy = $\frac{-47.025}{0.025}$ Enthalpy = $-1881 \text{ Kj Mol}^{-1}$

Comparison of experimental value with standard enthalpy change:

Standard enthalpy change of combustion of C_3H_7OH , ΔH_c^{θ} - 2021 Kj Mol⁻¹ Experimental enthalpy change of combustion of C_3H_7OH , ΔH_c - 1881 Kj Mol⁻¹

Errors:

- Incomplete combustion of the fuel less heat energy given out
- Heat loss to the surroundings less heat energy measured

Improvements:

- Use a **Bomb calorimeter** (left).
- This apparatus reduces heat loss s the water is insulated from the surroundings.
- It is burnt in oxygen to ensure complete combustion.

Questions 1-2 P195

Bond enthalpies

Bond enthalpy:

Is the enthalpy change that takes place when breaking by homolytic fission1 mole of a given bond in the molecules of a gaseous species

• To summarise - it is the energy required to break 1 mole of bonds in the gaseous state.

Some examples:

$$H - H_{(g)} \rightarrow 2H_{(g)}$$
 $\Delta H = +436 \text{ KjMol}^{-1}$
 $H - Cl_{(g)} \rightarrow H_{(g)} + Cl_{(g)} \Delta H = +432 \text{ KjMol}^{-1}$

- These bonds enthalpies can only exist in these examples but some bonds can exist in very different molecules.
- In cases like this we use the Average bond enthaply

Average bond enthalpy:

Bonds like C - H exist in all hydrocarbons but their bond enthalpies will vary depending on their environment:

- The C H bond enthalpy will be different in an alkane than the C H bond enthalpy in an aldehyde where the C atom is adjacent to an oxygen atom.
- For bond enthalpies that are common, we use average bond enthalpies:

Bond	Average bond enthalpy / KJ Mol ⁻¹			
C - H	+413			
O = 0	+497			
O - H	+463			
C = C	+612			
H - H	+436			

Breaking and making bonds:

Progress of reaction

- In this and any reaction, reactant bonds will be broken and new product bonds will be
- When bonds are broken energy is required making it an endothermic process, the activation energy.
- When new bonds are formed energy is release making it an exothermic process.
- If the energy released when new bonds form making the products is greater than the energy needed to break the bonds of the reactants, the reaction is exothermic.
- If the energy released when new bonds form making the products is less than the energy **needed** to break the bonds of the reactants, the reaction is **endothermic**.
- Strong bonds require lots of energy to break but they also release lots of energy when they form:

Breaking strong bonds → Forming weak bonds Endothermic process

Breaking weak bonds → Forming strong bonds Exothermic process

Using bond enthalpies to determine enthalpy changes:

• The symbol Σ is used for 'sum of' or adding together

Energy required to break bonds = Σ (Bond enthalpies of bonds broken) Breaking weak bonds = Σ (Bond enthalpies of bonds formed)

Formula:

 ΔH = $\frac{\sum \text{(Bond enthalpies of bonds broken)}}{\sum \text{(Bond enthalpies of bonds formed)}}$

Worked example:

Σ (Bond enthalpies of bonds broken)

 Σ (Bond enthalpies of bonds formed)

Reactants				Products			
Bond	Number	Bond energy	Total	Bond	Number	Bond energy	Total
C - H	4	413	1652	C = 0	2	805	1610
0 = 0	2	497	994	O - H	4	463	1852
Σ (Bond enthalpies of bonds broken) =		2646	Σ (Bond enthalpies of bonds formed) =			3462	

 $\Delta H = \Sigma$ (Bond enthalpies of bonds broken) - $\frac{\Sigma}{\text{formed}}$ (Bond enthalpies of bonds

 $\Delta H = 2646 - 3462$

 $\Delta H = -816 \text{ Kj Mol}^{-1}$

Questions 1-2 P197

Enthalpy changes from ΔH_c^θ - Hess's law

Measuring enthalpy changes indirectly:

- Sometimes it is not possible to measure an enthalpy change directly.
- This may be due to:

High activation energy

Slow rate of reaction

More than one reaction occurring at the same time

Hess's law allows us to work out enthalpy changes that are not possible to measure:

Definition: Hess's Law

The total enthalpy change accompanying a chemical change is independent of the route by which the chemical change takes place provided the initial and final conditions are the same.

- If this was not true, it could be possible to gain energy via route A instead of going via route
 B. This would break the 1st law of thermodynamics.
- It is found that reactants can be converted into the same products by more than 1 route.
- The total energy for each route is the same: These are called **Enthalpy cycles**.

Using Hess's law: Enthalpy cycles

- Enthalpy cycles are used to determine enthalpy changes for reactions that are not easily measured directly.
- This can be done in 2 ways:
 - 1. Enthalpy changes of combustion
 - 2. Enthalpy changes of formation

1 Calculating ΔH^{θ} from enthalpy changes of combustion:

Consider the enthalpy change below:

$$3C_{(s)} + 4H_{2(q)} \rightarrow C_3H_{8(q)}$$

- Combustion reactions can be used to find this enthalpy change as carbon hydrogen and propane all burn in oxygen.
- This means that their enthalpy changes of combustion can all be measured
- Constructing an enthalpy cycle:

• we use the opposite sign for - 2219 as our route, Route 2 goes the opposite way to the enthalpy change

Route
$$2 = (3 \times -394) + (4 \times -286) + 2219$$

Route $2 = -107 \text{ Kj Mol}^{-1}$

Remember

Route 1 = Route 2

Route 1 = -107 Kj Mol^{-1}

Using the formula:

 $\Delta H = \sum \Delta H_c^{\theta}$ (reactants) - $\sum \Delta H_c^{\theta}$ (products)

 $\Delta H = (3 \times -394) + (4 \times -286)$ - - 2219

 $\Delta H = -107 \text{ Ki Mol}^{-1}$

Question 1 P199

Enthalpy changes from ΔH^{θ}_{f} - Hess's law

Using enthalpy change of formation

- As with enthalpy changes of combustion, enthalpy changes of formation can be used in Hess's cycles to work out enthalpy changes.
- Consider the reaction:

$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

The enthalpy cycle would be:

 we use the opposite sign for - 297 = + 297 as our route, Route 2 goes the opposite way to the enthalpy change

Route
$$2 = (2 x + 297) + (2 x - 441)$$

Route
$$2 = -288 \text{ Kj Mol}^{-1}$$

Remember

Route 1 = Route 2

Route $1 = -288 \text{ Kj Mol}^{-1}$

Using the formula:

$$\Delta H = \frac{\sum \Delta H_f^{\theta}}{\text{(products)}} - \frac{\sum \Delta H_f^{\theta}}{\text{(reactants)}}$$

$$\Delta H = (2 \text{ x - 441}) - (2 \text{ x - 297})$$

$$\Delta H = -288 \text{ Kj Mol}^{-1}$$

Other enthalpy cycles:

- As long as there is a link between reactants and products, Hess's law can be applied and enthalpy cycles can be constructed.
- Follow the principles as outlined above and you won't go wrong.

Summary of enthalpy cycles:

Step 1:- Write a balanced chemical equation for the reaction.

Step 2:- Construct the Enthalpy cycle.

Step 3:- Decide on your routes and draw them on the cycle

Step 4:- Write in the ΔH^{θ} for each compound / element next to the arrows.

Step 5:- Look up the values of each ΔH^{θ} and write them in. Add them up for each route.

Step 6:- Write out Hess's law – Route 1 = Route 2

Step 7:- Put in your numbers.

Step 8:- Calculate ∆H^θ

Question 1-2 P201 / 1-7 P215 / 1,3-5 P217